Epi-Impute: Single-Cell RNA-seq Imputation via Integration with Single-Cell ATAC-seq

被引:4
|
作者
Raevskiy, Mikhail [1 ,2 ]
Yanvarev, Vladislav [1 ]
Jung, Sascha [3 ,4 ]
Del Sol, Antonio [3 ,4 ]
Medvedeva, Yulia A. [1 ,5 ,6 ]
机构
[1] Moscow Inst Phys & Technol, Dept Biol & Med Phys, Moscow 141701, Russia
[2] Skolkovo Inst Sci & Technol, Moscow 121205, Russia
[3] Ctr Cooperat Res Biosci, Computat Biol Lab, Derio 48160, Bizkaia, Spain
[4] Univ Luxembourg, Ctr Syst Biomed, L-4365 Luxembourg, Luxembourg
[5] Russian Acad Sci, Inst Bioengn, Res Ctr Biotechnol, Moscow 119071, Russia
[6] Natl Med Res Ctr Endocrinol, Moscow 117036, Russia
关键词
single cell RNA-seq; imputation; single cell ATAC-seq; EXPRESSION; ENHANCERS;
D O I
10.3390/ijms24076229
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA-seq data contains a lot of dropouts hampering downstream analyses due to the low number and inefficient capture of mRNAs in individual cells. Here, we present Epi-Impute, a computational method for dropout imputation by reconciling expression and epigenomic data. Epi-Impute leverages single-cell ATAC-seq data as an additional source of information about gene activity to reduce the number of dropouts. We demonstrate that Epi-Impute outperforms existing methods, especially for very sparse single-cell RNA-seq data sets, significantly reducing imputation error. At the same time, Epi-Impute accurately captures the primary distribution of gene expression across cells while preserving the gene-gene and cell-cell relationship in the data. Moreover, Epi-Impute allows for the discovery of functionally relevant cell clusters as a result of the increased resolution of scRNA-seq data due to imputation.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Peng, Tao
    Zhu, Qin
    Yin, Penghang
    Tan, Kai
    GENOME BIOLOGY, 2019, 20 (1)
  • [22] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Tao Peng
    Qin Zhu
    Penghang Yin
    Kai Tan
    Genome Biology, 20
  • [23] A deep generative model for multi-view profiling of single-cell RNA-seq and ATAC-seq data
    Li, Gaoyang
    Fu, Shaliu
    Wang, Shuguang
    Zhu, Chenyu
    Duan, Bin
    Tang, Chen
    Chen, Xiaohan
    Chuai, Guohui
    Wang, Ping
    Liu, Qi
    GENOME BIOLOGY, 2022, 23 (01)
  • [24] A deep generative model for multi-view profiling of single-cell RNA-seq and ATAC-seq data
    Gaoyang Li
    Shaliu Fu
    Shuguang Wang
    Chenyu Zhu
    Bin Duan
    Chen Tang
    Xiaohan Chen
    Guohui Chuai
    Ping Wang
    Qi Liu
    Genome Biology, 23
  • [25] Integrative Single-Cell RNA-Seq and ATAC-Seq Analysis of Peripheral Mononuclear Cells in Patients With Ankylosing Spondylitis
    Xu, Huixuan
    Yu, Haiyan
    Liu, Lixiong
    Wu, Hongwei
    Zhang, Cantong
    Cai, Wanxia
    Hong, Xiaoping
    Liu, Dongzhou
    Tang, Donge
    Dai, Yong
    FRONTIERS IN IMMUNOLOGY, 2021, 12
  • [26] scJoint integrates atlas-scale single-cell RNA-seq and ATAC-seq data with transfer learning
    Yingxin Lin
    Tung-Yu Wu
    Sheng Wan
    Jean Y. H. Yang
    Wing H. Wong
    Y. X. Rachel Wang
    Nature Biotechnology, 2022, 40 : 703 - 710
  • [27] scJoint integrates atlas-scale single-cell RNA-seq and ATAC-seq data with transfer learning
    Lin, Yingxin
    Wu, Tung-Yu
    Wan, Sheng
    Yang, Jean Y. H.
    Wong, Wing H.
    Wang, Y. X. Rachel
    NATURE BIOTECHNOLOGY, 2022, 40 (05) : 703 - +
  • [28] Evaluating imputation methods for single-cell RNA-seq data
    Yi Cheng
    Xiuli Ma
    Lang Yuan
    Zhaoguo Sun
    Pingzhang Wang
    BMC Bioinformatics, 24
  • [29] CrossMP: Enabling Cross-Modality Translation between Single-Cell RNA-Seq and Single-Cell ATAC-Seq through Web-Based Portal
    Lyu, Zhen
    Dahal, Sabin
    Zeng, Shuai
    Wang, Juexin
    Xu, Dong
    Joshi, Trupti
    GENES, 2024, 15 (07)
  • [30] Evaluating imputation methods for single-cell RNA-seq data
    Cheng, Yi
    Ma, Xiuli
    Yuan, Lang
    Sun, Zhaoguo
    Wang, Pingzhang
    BMC BIOINFORMATICS, 2023, 24 (01)