Passivating Contacts for Crystalline Silicon Solar Cells: An Overview of the Current Advances and Future Perspectives

被引:20
|
作者
Li, Wei [1 ,2 ,3 ,4 ]
Xu, Zhiyuan [1 ,2 ,3 ,4 ]
Yan, Yu [1 ,2 ,3 ,4 ]
Zhou, Jiakai [1 ,2 ,3 ,4 ]
Huang, Qian [1 ,2 ,3 ,4 ]
Xu, Shengzhi [1 ,2 ,3 ,4 ]
Zhang, Xiaodan [1 ,2 ,3 ,4 ]
Zhao, Ying [1 ,2 ,3 ,4 ]
Hou, Guofu [1 ,2 ,3 ,4 ]
机构
[1] Nankai Univ, Inst Photoelect Thin Film Devices & Technol, Tianjin 300350, Peoples R China
[2] Tianjin Key Lab Efficient Utilizat Solar Energy, Tianjin 300350, Peoples R China
[3] Minist Educ, Res Ctr Thin Film Photoelect Technol, Tianjin 300350, Peoples R China
[4] State Key Lab Photovolta Mat & Solar Cells, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
c-Si solar cells; design principles; efficiency improvement; passivating contacts; CARRIER-SELECTIVE CONTACTS; ATOMIC LAYER DEPOSITION; SURFACE PASSIVATION; INTERFACE PASSIVATION; MOLYBDENUM OXIDE; DOPANT-FREE; CONVERSION EFFICIENCY; AMORPHOUS-SILICON; ELECTRON CONTACT; REAR CONTACTS;
D O I
10.1002/aenm.202304338
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solar photovoltaics (PV) are poised to be crucial in limiting global warming by replacing traditional fossil fuel generation. Within the PV community, crystalline silicon (c-Si) solar cells currently dominate, having made significant efficiency breakthroughs in recent years. These advancements are primarily due to innovations in solar cell technology, particularly in developing passivating contact schemes. As such, this review article comprehensively examines the evolution of high-efficiency c-Si solar cells, adopting a historical perspective to investigate the advancements in passivation contact techniques and materials to state-of-the-art cell designs. Additionally, this work deeply studies the recent advances and critical design principles underlying each developed passivation scheme. Eventually, this work identifies existing challenges and proposes insights into future directions for c-Si solar cells through diverse passivating contact strategies. This work conducts a comprehensive and in-depth study of the evolution of high-efficiency c-Si solar cells, adopting a historical perspective to explore the advancements in passivation contact techniques and materials to state-of-the-art cell designs. Besides, this work identifies existing challenges and proposes insights into future pathways for c-Si solar cells. image
引用
收藏
页数:29
相关论文
共 50 条
  • [31] Application of polycrystalline silicon carbide thin films as the passivating contacts for silicon solar cells
    Xu, Zhiyu
    Tao, Ke
    Jiang, Shuai
    Jia, Rui
    Li, Wei
    Zhou, Ying
    Jin, Zhi
    Liu, Xinyu
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 206 (206)
  • [32] The future of crystalline silicon solar cells
    Green, MA
    PROGRESS IN PHOTOVOLTAICS, 2000, 8 (01): : 127 - 139
  • [33] Oxygen vacancy modulation of nanolayer TiOx to improve hole-selective passivating contacts for crystalline silicon solar cells
    Wang, Yanhao
    Guo, Zhaoyang
    Li, Yongchang
    Black, Lachlan E.
    MacDonald, Daniel H.
    Bao, Shaojuan
    Wang, Jilei
    Zhang, Yongzhe
    Zhang, Shan-Ting
    Li, Dongdong
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (43) : 29833 - 29842
  • [34] Passivating Contacts for Silicon Solar Cells with 800 °C Stability Based on Tunnel-Oxide and Highly Crystalline Thin Silicon Layer
    Stuckelberger, J.
    Nogay, G.
    Wyss, P.
    Lehmann, M.
    Allebe, C.
    Debrot, F.
    Ledinsky, M.
    Fejfar, A.
    Despeisse, M.
    Haug, F. -J.
    Loper, P.
    Ballif, Christophe
    2016 IEEE 43RD PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2016, : 2518 - 2521
  • [35] Exploring hafnium oxide's potential for passivating contacts for silicon solar cells
    Wratten, A.
    Pain, S. L.
    Yadav, A.
    Khorani, E.
    Niewelt, T.
    Black, L.
    Bartholazzi, G.
    Walker, D.
    Grant, N. E.
    Murphy, J. D.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2023, 259
  • [36] Quantum-well passivating contact at polysilicon/crystalline silicon interface for crystalline silicon solar cells
    Pham, Duy Phong
    Kim, Sungheon
    Vinh-Ai Dao
    Kim, Youngkuk
    Yi, Junsin
    CHEMICAL ENGINEERING JOURNAL, 2022, 449
  • [37] Temperature-dependent performance of silicon solar cells with polysilicon passivating contacts
    Le, Anh Huy Tuan
    Basnet, Rabin
    Yan, Di
    Chen, Wenhao
    Nandakumar, Naomi
    Duttagupta, Shubham
    Seif, Johannes P.
    Hameiri, Ziv
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 225
  • [38] Tunnel oxide passivating electron contacts for high-efficiency n-type silicon solar cells with amorphous silicon passivating hole contacts
    Park, HyunJung
    Lee, Youngseok
    Park, Se Jin
    Bae, Soohyun
    Kim, Sangho
    Oh, Donghyun
    Park, Jinjoo
    Kim, Youngkuk
    Guim, Hwanuk
    Kang, Yoonmook
    Lee, Hae-Seok
    Kim, Donghwan
    Yi, Junsin
    PROGRESS IN PHOTOVOLTAICS, 2019, 27 (12): : 1104 - 1114
  • [39] Thermal stability of amorphous silicon/silicon nitride stacks for passivating crystalline silicon solar cells
    Gatz, S.
    Plagwitz, H.
    Altermatt, P. P.
    Terheiden, B.
    Brendel, R.
    APPLIED PHYSICS LETTERS, 2008, 93 (17)
  • [40] Properties of mixed phase silicon-oxide-based passivating contacts for silicon solar cells
    Mack, I.
    Stuckelberger, J.
    Wyss, P.
    Nogay, G.
    Jeangros, Q.
    Horzel, J.
    Allebe, C.
    Despeisse, M.
    Haug, F. -J.
    Ingenito, A.
    Loeper, P.
    Ballif, C.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 181 : 9 - 14