Artificial intelligence-enabled prediction of chemotherapy-induced cardiotoxicity from baseline electrocardiograms

被引:5
|
作者
Yagi, Ryuichiro [1 ,2 ,3 ]
Goto, Shinichi [1 ,2 ,4 ]
Himeno, Yukihiro [5 ]
Katsumata, Yoshinori [6 ]
Hashimoto, Masahiro [7 ]
MacRae, Calum A. [1 ,2 ]
Deo, Rahul C. [1 ,2 ]
机构
[1] Brigham & Womens Hosp, Dept Med, One Brave Idea & Div Cardiovasc Med, Boston, MA 02115 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
[3] Keio Univ, Sch Med, Dept Prevent Med & Publ Hlth, Tokyo, Japan
[4] Tokai Univ, Sch Med, Dept Gen & Acute Med, Div Gen Internal Med & Family Med, Isehara, Kanagawa, Japan
[5] Keio Univ, Sch Med, Dept Cardiol, Tokyo, Japan
[6] Keio Univ, Sch Med, Inst Integrated Sports Med, Tokyo, Japan
[7] Keio Univ, Sch Med, Dept Radiol, Tokyo, Japan
关键词
HEART-FAILURE; ANTHRACYCLINE CARDIOTOXICITY; CANCER-PATIENTS; DOXORUBICIN; ECHOCARDIOGRAPHY; DYSFUNCTION; CONSENSUS; TIME;
D O I
10.1038/s41467-024-45733-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Anthracyclines can cause cancer therapy-related cardiac dysfunction (CTRCD) that adversely affects prognosis. Despite guideline recommendations, only half of the patients undergo surveillance echocardiograms. An AI model detecting reduced left ventricular ejection fraction from 12-lead electrocardiograms (ECG) (AI-EF model) suggests ECG features reflect left ventricular pathophysiology. We hypothesized that AI could predict CTRCD from baseline ECG, leveraging the AI-EF model's insights, and developed the AI-CTRCD model using transfer learning on the AI-EF model. In 1011 anthracycline-treated patients, 8.7% experienced CTRCD. High AI-CTRCD scores indicated elevated CTRCD risk (hazard ratio (HR), 2.66; 95% CI 1.73-4.10; log-rank p < 0.001). This remained consistent after adjusting for risk factors (adjusted HR, 2.57; 95% CI 1.62-4.10; p < 0.001). AI-CTRCD score enhanced prediction beyond known factors (time-dependent AUC for 2 years: 0.78 with AI-CTRCD score vs. 0.74 without; p = 0.005). In conclusion, the AI model robustly stratified CTRCD risk from baseline ECG.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Artificial intelligence-enabled prediction of chemotherapy-induced cardiotoxicity from baseline electrocardiograms
    Ryuichiro Yagi
    Shinichi Goto
    Yukihiro Himeno
    Yoshinori Katsumata
    Masahiro Hashimoto
    Calum A. MacRae
    Rahul C. Deo
    [J]. Nature Communications, 15
  • [2] Expanded adaptation of an artificial intelligence model for predicting chemotherapy-induced cardiotoxicity using baseline electrocardiograms
    Yagi, R.
    Goto, S.
    MacRae, C. A.
    Deo, R. C.
    [J]. EUROPEAN HEART JOURNAL, 2022, 43 : 2577 - 2577
  • [3] ARTIFICIAL INTELLIGENCE-ENABLED PREDICTION OF ATRIAL FIBRILLATION EVENTS USING MOBILE ELECTROCARDIOGRAMS
    Nguyen, Dan
    Raghunath, Ananditha
    Schram, Matthew
    Albert, Dave
    Gollakota, Shyamnath
    Shapiro, Linda
    Raghav, Arun
    Sridhar, Mahankali
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (09) : 2054 - 2054
  • [4] Artificial intelligence-enabled mobile electrocardiograms for event prediction in paroxysmal atrial fibrillation
    Raghunath, Ananditha
    Nguyen, Dan D.
    Schram, Matthew
    Albert, David
    Gollakota, Shyamnath
    Shapiro, Linda
    Sridhar, Arun R.
    [J]. CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2023, 4 (01): : 21 - 28
  • [5] QTNet Predicting Drug-Induced QT Prolongation With Artificial Intelligence-Enabled Electrocardiograms
    Zhang, Hao
    Tarabanis, Constantine
    Jethani, Neil
    Goldstein, Mark
    Smith, Silas
    Chinitz, Larry
    Ranganath, Rajesh
    Aphinyanaphongs, Yindalon
    Jankelson, Lior
    [J]. JACC-CLINICAL ELECTROPHYSIOLOGY, 2024, 10 (05) : 956 - 966
  • [6] Prediction of certainty in artificial intelligence-enabled electrocardiography
    Demolder, Anthony
    Nauwynck, Maxime
    De Pauw, Michel
    De Buyzere, Marc
    Duytschaever, Mattias
    Timmermans, Frank
    De Pooter, Jan
    [J]. JOURNAL OF ELECTROCARDIOLOGY, 2024, 83 : 71 - 79
  • [7] Artificial intelligence-enabled classification of hypertrophic heart diseases using electrocardiograms
    Haimovich, Julian S.
    Diamant, Nate
    Khurshid, Shaan
    Di Achille, Paolo
    Reeder, Christopher
    Friedman, Sam
    Singh, Pulkit
    Spurlock, Walter
    Ellinor, Patrick T.
    Philippakis, Anthony
    Batra, Puneet
    Ho, Jennifer E.
    Lubitz, Steven A.
    [J]. CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2023, 4 (02): : 48 - 59
  • [8] Effect of Graves' Disease on Female Probability Derived from Artificial Intelligence-Enabled Electrocardiograms in Women
    Naser, Jwan A.
    Attia, Zachi
    Pislaru, Sorin
    Stan, Marius
    Noseworthy, Peter A.
    Friedman, Paul
    Lin, Grace
    [J]. CIRCULATION, 2021, 144
  • [9] Early prediction of chemotherapy-induced cardiotoxicity
    K. A. Jones
    N. E. R. Goodfield
    [J]. Journal of Nuclear Cardiology, 2023, 30 : 2112 - 2113
  • [10] Early prediction of chemotherapy-induced cardiotoxicity
    Jones, K. A.
    Goodfield, N. E. R.
    [J]. JOURNAL OF NUCLEAR CARDIOLOGY, 2023, 30 (05) : 2112 - 2113