Artificial intelligence-enabled prediction of chemotherapy-induced cardiotoxicity from baseline electrocardiograms

被引:5
|
作者
Yagi, Ryuichiro [1 ,2 ,3 ]
Goto, Shinichi [1 ,2 ,4 ]
Himeno, Yukihiro [5 ]
Katsumata, Yoshinori [6 ]
Hashimoto, Masahiro [7 ]
MacRae, Calum A. [1 ,2 ]
Deo, Rahul C. [1 ,2 ]
机构
[1] Brigham & Womens Hosp, Dept Med, One Brave Idea & Div Cardiovasc Med, Boston, MA 02115 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
[3] Keio Univ, Sch Med, Dept Prevent Med & Publ Hlth, Tokyo, Japan
[4] Tokai Univ, Sch Med, Dept Gen & Acute Med, Div Gen Internal Med & Family Med, Isehara, Kanagawa, Japan
[5] Keio Univ, Sch Med, Dept Cardiol, Tokyo, Japan
[6] Keio Univ, Sch Med, Inst Integrated Sports Med, Tokyo, Japan
[7] Keio Univ, Sch Med, Dept Radiol, Tokyo, Japan
关键词
HEART-FAILURE; ANTHRACYCLINE CARDIOTOXICITY; CANCER-PATIENTS; DOXORUBICIN; ECHOCARDIOGRAPHY; DYSFUNCTION; CONSENSUS; TIME;
D O I
10.1038/s41467-024-45733-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Anthracyclines can cause cancer therapy-related cardiac dysfunction (CTRCD) that adversely affects prognosis. Despite guideline recommendations, only half of the patients undergo surveillance echocardiograms. An AI model detecting reduced left ventricular ejection fraction from 12-lead electrocardiograms (ECG) (AI-EF model) suggests ECG features reflect left ventricular pathophysiology. We hypothesized that AI could predict CTRCD from baseline ECG, leveraging the AI-EF model's insights, and developed the AI-CTRCD model using transfer learning on the AI-EF model. In 1011 anthracycline-treated patients, 8.7% experienced CTRCD. High AI-CTRCD scores indicated elevated CTRCD risk (hazard ratio (HR), 2.66; 95% CI 1.73-4.10; log-rank p < 0.001). This remained consistent after adjusting for risk factors (adjusted HR, 2.57; 95% CI 1.62-4.10; p < 0.001). AI-CTRCD score enhanced prediction beyond known factors (time-dependent AUC for 2 years: 0.78 with AI-CTRCD score vs. 0.74 without; p = 0.005). In conclusion, the AI model robustly stratified CTRCD risk from baseline ECG.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Artificial intelligence-enabled smart city construction
    Jiang, Yanxu
    Han, Linfei
    Gao, Yifang
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (18): : 19501 - 19521
  • [22] Comprehensive clinical application analysis of artificial intelligence-enabled electrocardiograms for screening multiple valvular heart diseases
    Lin, Yu-Ting
    Lin, Chin-Sheng
    Tsai, Chien-Sung
    Tsai, Dung-Jang
    Lou, Yu-Sheng
    Fang, Wen-Hui
    Lee, Yung-Tsai
    Lin, Chin
    AGING-US, 2024, 16 (10): : 8717 - 8731
  • [23] A BREAKTHROUGH IN ARTIFICIAL INTELLIGENCE-ENABLED MATERIALS DISCOVERY
    Bailey, Mary Page
    Chemical Engineering (United States), 2021, 128 (01):
  • [24] Artificial intelligence-enabled decision support in nephrology
    Tyler J. Loftus
    Benjamin Shickel
    Tezcan Ozrazgat-Baslanti
    Yuanfang Ren
    Benjamin S. Glicksberg
    Jie Cao
    Karandeep Singh
    Lili Chan
    Girish N. Nadkarni
    Azra Bihorac
    Nature Reviews Nephrology, 2022, 18 : 452 - 465
  • [25] Artificial intelligence-enabled smart city construction
    Yanxu Jiang
    Linfei Han
    Yifang Gao
    The Journal of Supercomputing, 2022, 78 : 19501 - 19521
  • [26] Artificial intelligence-enabled decision support in nephrology
    Loftus, Tyler J.
    Shickel, Benjamin
    Ozrazgat-Baslanti, Tezcan
    Ren, Yuanfang
    Glicksberg, Benjamin S.
    Cao, Jie
    Singh, Karandeep
    Chan, Lili
    Nadkarni, Girish N.
    Bihorac, Azra
    NATURE REVIEWS NEPHROLOGY, 2022, 18 (07) : 452 - 465
  • [27] Clinical Evaluation of Artificial Intelligence-Enabled Interventions
    Hogg, H. D. Jeffry
    Martindale, Alexander P. L.
    Liu, Xiaoxuan
    Denniston, Alastair K.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (10)
  • [28] Prediction of premature ventricular complex origins using artificial intelligence-enabled algorithms
    Nakamura, Tomofumi
    Nagata, Yasutoshi
    Nitta, Giichi
    Okata, Shinichiro
    Nagase, Masashi
    Mitsui, Kentaro
    Watanabe, Keita
    Miyazaki, Ryoichi
    Kaneko, Masakazu
    Nagamine, Sho
    Hara, Nobuhiro
    Lee, Tetsumin
    Nozato, Toshihiro
    Ashikaga, Takashi
    Goya, Masahiko
    Sasano, Tetsuo
    CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2021, 2 (01): : 76 - 83
  • [29] Artificial Intelligence-Enabled Traffic Monitoring System
    Mandal, Vishal
    Mussah, Abdul Rashid
    Jin, Peng
    Adu-Gyamfi, Yaw
    SUSTAINABILITY, 2020, 12 (21) : 1 - 21
  • [30] PERFORMANCE OF ARTIFICIAL INTELLIGENCE-ENABLED ELECTROCARDIOGRAPHY IN THE PREDICTION OF NONALCOHOLIC FATTY LIVER DISEASE
    Udompap, Prowpanga
    Liu, Kan
    Attia, Zachi I.
    Canning, Rachel
    Benson, Joanne T.
    Therneau, Terry M.
    Noseworthy, Peter A.
    Friedman, Paul A.
    Rattan, Puru
    Ahn, Joseph C.
    Simonetto, Douglas A.
    Shah, Vijay
    Kamath, Patrick S.
    Allen, Alina M.
    HEPATOLOGY, 2022, 76 : S617 - S618