Artificial intelligence-enabled classification of hypertrophic heart diseases using electrocardiograms

被引:6
|
作者
Haimovich, Julian S. [1 ,2 ]
Diamant, Nate [4 ]
Khurshid, Shaan [2 ,5 ]
Di Achille, Paolo [4 ]
Reeder, Christopher [4 ]
Friedman, Sam
Singh, Pulkit [4 ]
Spurlock, Walter
Ellinor, Patrick T. [2 ,3 ,5 ]
Philippakis, Anthony [5 ,6 ]
Batra, Puneet [4 ]
Ho, Jennifer E. [7 ,8 ]
Lubitz, Steven A. [2 ,3 ,5 ]
机构
[1] Harvard Med Sch, Massachusetts Gen Hosp, Dept Med, Boston, MA USA
[2] Massachusetts Gen Hosp, Cardiovasc Res Ctr, 55 Fruit St,GRB 109, Boston, MA 02114 USA
[3] Broad Inst MIT & Harvard, Cardiovasc Dis Initiat, Cambridge, MA USA
[4] Broad Inst MIT & Harvard, Data Sci Platform, Cambridge, MA USA
[5] Massachusetts Gen Hosp, Demoulas Ctr Cardiac Arrhythmias, 55 Fruit St,GRB 109, Boston, MA 02114 USA
[6] Broad Inst MIT & Harvard, Eric & Wendy Schmidt Ctr, Cambridge, MA USA
[7] Beth Israel Deaconess Med Ctr, Cardiovasc Inst, Boston, MA USA
[8] Beth Israel Deaconess Med Ctr, Dept Med, Div Cardiol, Boston, MA USA
来源
基金
美国国家卫生研究院;
关键词
Artificial intelligence; Electrocardiography; Hypertro-phic heart disease; Hypertrophic cardiomyopathy; Cardiac amyloidosis; LEFT-VENTRICULAR HYPERTROPHY; ATRIAL-FIBRILLATION; PROGNOSTIC-SIGNIFICANCE; SYSTEMIC AMYLOIDOSIS; DIAGNOSIS; CARDIOMYOPATHY; PREVALENCE; FEATURES; CRITERIA; FAILURE;
D O I
10.1016/j.cvdhj.2023.03.001
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Differentiating among cardiac diseases associated with left ventricular hypertrophy (LVH) informs diagnosis and clin-ical care.OBJECTIVE To evaluate if artificial intelligence-enabled analysis of the 12-lead electrocardiogram (ECG) facilitates automated detec-tion and classification of LVH.METHODS We used a pretrained convolutional neural network to derive numerical representations of 12-lead ECG waveforms from patients in a multi-institutional healthcare system who had car-diac diseases associated with LVH (n = 50,709), including car-diac amyloidosis (n = 304), hypertrophic cardiomyopathy (n = 1056), hypertension (n = 20,802), aortic stenosis (n = 446), and other causes (n = 4766). We then regressed LVH etiologies relative to no LVH on age, sex, and the numerical 12-lead rep-resentations using logistic regression ("LVH-Net"). To assess deep learning model performance on single-lead data analogous to mobile ECGs, we also developed 2 single-lead deep learning models by training models on lead I ("LVH-Net Lead I") or lead II ("LVH-Net Lead II") from the 12-lead ECG. We compared the performance of the LVH-Net models to alternative models fit on (1) age, sex, and standard ECG measures, and (2) clinical ECG-based rules for diagnosing LVH.RESULTS The areas under the receiver operator characteristic curve of LVH-Net by specific LVH etiology were cardiac amyloidosis 0.95 [95% CI, 0.93-0.97], hypertrophic cardiomyopathy 0.92 [95% CI, 0.90-0.94], aortic stenosis LVH 0.90 [95% CI, 0.88-0.92], hyper-tensive LVH 0.76 [95% CI, 0.76-0.77], and other LVH 0.69 [95% CI 0.68-0.71]. The single-lead models also discriminated LVH etiol-ogies well.CONCLUSION An artificial intelligence-enabled ECG model is favorable for detection and classification of LVH and outperforms clinical ECG-based rules.
引用
收藏
页码:48 / 59
页数:12
相关论文
共 50 条
  • [1] Comprehensive clinical application analysis of artificial intelligence-enabled electrocardiograms for screening multiple valvular heart diseases
    Lin, Yu-Ting
    Lin, Chin-Sheng
    Tsai, Chien-Sung
    Tsai, Dung-Jang
    Lou, Yu-Sheng
    Fang, Wen-Hui
    Lee, Yung-Tsai
    Lin, Chin
    [J]. AGING-US, 2024, 16 (10): : 8717 - 8731
  • [2] ARTIFICIAL INTELLIGENCE-ENABLED PREDICTION OF ATRIAL FIBRILLATION EVENTS USING MOBILE ELECTROCARDIOGRAMS
    Nguyen, Dan
    Raghunath, Ananditha
    Schram, Matthew
    Albert, Dave
    Gollakota, Shyamnath
    Shapiro, Linda
    Raghav, Arun
    Sridhar, Mahankali
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (09) : 2054 - 2054
  • [3] Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms
    Shinichi Goto
    Keitaro Mahara
    Lauren Beussink-Nelson
    Hidehiko Ikura
    Yoshinori Katsumata
    Jin Endo
    Hanna K. Gaggin
    Sanjiv J. Shah
    Yuji Itabashi
    Calum A. MacRae
    Rahul C. Deo
    [J]. Nature Communications, 12
  • [4] Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms
    Goto, Shinichi
    Mahara, Keitaro
    Beussink-Nelson, Lauren
    Ikura, Hidehiko
    Katsumata, Yoshinori
    Endo, Jin
    Gaggin, Hanna K.
    Shah, Sanjiv J.
    Itabashi, Yuji
    MacRae, Calum A.
    Deo, Rahul C.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [5] An artificial intelligence-enabled industry classification and its interpretation
    Kim, Daejin
    Kang, Hyoung-Goo
    Bae, Kyounghun
    Jeon, Seongmin
    [J]. INTERNET RESEARCH, 2022, 32 (02) : 406 - 424
  • [6] Artificial intelligence-enabled mobile electrocardiograms for event prediction in paroxysmal atrial fibrillation
    Raghunath, Ananditha
    Nguyen, Dan D.
    Schram, Matthew
    Albert, David
    Gollakota, Shyamnath
    Shapiro, Linda
    Sridhar, Arun R.
    [J]. CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2023, 4 (01): : 21 - 28
  • [7] DETECTION OF HYPERTROPHIC CARDIOMYOPATHY BY ARTIFICIAL INTELLIGENCE-ENABLED ELECTROCARDIOGRAPHY IN CHILDREN AND ADOLESCENTS
    Siontis, Konstantinos
    Liu, Kan
    Bos, J. Martijn
    Attia, Zachi Itzhak
    Arruda-Olson, Adelaide
    Farahani, Nasibeh Z.
    Friedman, Paul
    Noseworthy, Peter
    Ackerman, Michael
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 77 (18) : 3247 - 3247
  • [8] Artificial intelligence-enabled prediction of chemotherapy-induced cardiotoxicity from baseline electrocardiograms
    Ryuichiro Yagi
    Shinichi Goto
    Yukihiro Himeno
    Yoshinori Katsumata
    Masahiro Hashimoto
    Calum A. MacRae
    Rahul C. Deo
    [J]. Nature Communications, 15
  • [9] Artificial intelligence-enabled prediction of chemotherapy-induced cardiotoxicity from baseline electrocardiograms
    Yagi, Ryuichiro
    Goto, Shinichi
    Himeno, Yukihiro
    Katsumata, Yoshinori
    Hashimoto, Masahiro
    MacRae, Calum A.
    Deo, Rahul C.
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [10] QTNet Predicting Drug-Induced QT Prolongation With Artificial Intelligence-Enabled Electrocardiograms
    Zhang, Hao
    Tarabanis, Constantine
    Jethani, Neil
    Goldstein, Mark
    Smith, Silas
    Chinitz, Larry
    Ranganath, Rajesh
    Aphinyanaphongs, Yindalon
    Jankelson, Lior
    [J]. JACC-CLINICAL ELECTROPHYSIOLOGY, 2024, 10 (05) : 956 - 966