Artificial intelligence-enabled classification of hypertrophic heart diseases using electrocardiograms

被引:6
|
作者
Haimovich, Julian S. [1 ,2 ]
Diamant, Nate [4 ]
Khurshid, Shaan [2 ,5 ]
Di Achille, Paolo [4 ]
Reeder, Christopher [4 ]
Friedman, Sam
Singh, Pulkit [4 ]
Spurlock, Walter
Ellinor, Patrick T. [2 ,3 ,5 ]
Philippakis, Anthony [5 ,6 ]
Batra, Puneet [4 ]
Ho, Jennifer E. [7 ,8 ]
Lubitz, Steven A. [2 ,3 ,5 ]
机构
[1] Harvard Med Sch, Massachusetts Gen Hosp, Dept Med, Boston, MA USA
[2] Massachusetts Gen Hosp, Cardiovasc Res Ctr, 55 Fruit St,GRB 109, Boston, MA 02114 USA
[3] Broad Inst MIT & Harvard, Cardiovasc Dis Initiat, Cambridge, MA USA
[4] Broad Inst MIT & Harvard, Data Sci Platform, Cambridge, MA USA
[5] Massachusetts Gen Hosp, Demoulas Ctr Cardiac Arrhythmias, 55 Fruit St,GRB 109, Boston, MA 02114 USA
[6] Broad Inst MIT & Harvard, Eric & Wendy Schmidt Ctr, Cambridge, MA USA
[7] Beth Israel Deaconess Med Ctr, Cardiovasc Inst, Boston, MA USA
[8] Beth Israel Deaconess Med Ctr, Dept Med, Div Cardiol, Boston, MA USA
来源
基金
美国国家卫生研究院;
关键词
Artificial intelligence; Electrocardiography; Hypertro-phic heart disease; Hypertrophic cardiomyopathy; Cardiac amyloidosis; LEFT-VENTRICULAR HYPERTROPHY; ATRIAL-FIBRILLATION; PROGNOSTIC-SIGNIFICANCE; SYSTEMIC AMYLOIDOSIS; DIAGNOSIS; CARDIOMYOPATHY; PREVALENCE; FEATURES; CRITERIA; FAILURE;
D O I
10.1016/j.cvdhj.2023.03.001
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Differentiating among cardiac diseases associated with left ventricular hypertrophy (LVH) informs diagnosis and clin-ical care.OBJECTIVE To evaluate if artificial intelligence-enabled analysis of the 12-lead electrocardiogram (ECG) facilitates automated detec-tion and classification of LVH.METHODS We used a pretrained convolutional neural network to derive numerical representations of 12-lead ECG waveforms from patients in a multi-institutional healthcare system who had car-diac diseases associated with LVH (n = 50,709), including car-diac amyloidosis (n = 304), hypertrophic cardiomyopathy (n = 1056), hypertension (n = 20,802), aortic stenosis (n = 446), and other causes (n = 4766). We then regressed LVH etiologies relative to no LVH on age, sex, and the numerical 12-lead rep-resentations using logistic regression ("LVH-Net"). To assess deep learning model performance on single-lead data analogous to mobile ECGs, we also developed 2 single-lead deep learning models by training models on lead I ("LVH-Net Lead I") or lead II ("LVH-Net Lead II") from the 12-lead ECG. We compared the performance of the LVH-Net models to alternative models fit on (1) age, sex, and standard ECG measures, and (2) clinical ECG-based rules for diagnosing LVH.RESULTS The areas under the receiver operator characteristic curve of LVH-Net by specific LVH etiology were cardiac amyloidosis 0.95 [95% CI, 0.93-0.97], hypertrophic cardiomyopathy 0.92 [95% CI, 0.90-0.94], aortic stenosis LVH 0.90 [95% CI, 0.88-0.92], hyper-tensive LVH 0.76 [95% CI, 0.76-0.77], and other LVH 0.69 [95% CI 0.68-0.71]. The single-lead models also discriminated LVH etiol-ogies well.CONCLUSION An artificial intelligence-enabled ECG model is favorable for detection and classification of LVH and outperforms clinical ECG-based rules.
引用
收藏
页码:48 / 59
页数:12
相关论文
共 50 条
  • [21] Artificial intelligence-enabled smart city construction
    Yanxu Jiang
    Linfei Han
    Yifang Gao
    [J]. The Journal of Supercomputing, 2022, 78 : 19501 - 19521
  • [22] Artificial intelligence-enabled decision support in nephrology
    Loftus, Tyler J.
    Shickel, Benjamin
    Ozrazgat-Baslanti, Tezcan
    Ren, Yuanfang
    Glicksberg, Benjamin S.
    Cao, Jie
    Singh, Karandeep
    Chan, Lili
    Nadkarni, Girish N.
    Bihorac, Azra
    [J]. NATURE REVIEWS NEPHROLOGY, 2022, 18 (07) : 452 - 465
  • [23] Clinical Evaluation of Artificial Intelligence-Enabled Interventions
    Hogg, H. D. Jeffry
    Martindale, Alexander P. L.
    Liu, Xiaoxuan
    Denniston, Alastair K.
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (10)
  • [24] Artificial Intelligence-Enabled Traffic Monitoring System
    Mandal, Vishal
    Mussah, Abdul Rashid
    Jin, Peng
    Adu-Gyamfi, Yaw
    [J]. SUSTAINABILITY, 2020, 12 (21) : 1 - 21
  • [25] Detection of Left Atrial Myopathy Using Artificial Intelligence-Enabled Electrocardiography
    Verbrugge, Frederik H.
    Reddy, Yogesh N. V.
    Attia, Zachi I.
    Friedman, Paul A.
    Noseworthy, Peter A.
    Lopez-Jimenez, Francisco
    Kapa, Suraj
    Borlaug, Barry A.
    [J]. CIRCULATION-HEART FAILURE, 2022, 15 (01) : E008176
  • [26] Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard
    Yousefi, Siamak
    Elze, Tobias
    Pasquale, Louis R.
    Saeedi, Osamah
    Wang, Mengyu
    Shen, Lucy Q.
    Wellik, Sarah R.
    De Moraes, Carlos G.
    Myers, Jonathan S.
    Boland, Michael, V
    [J]. OPHTHALMOLOGY, 2020, 127 (09) : 1170 - 1178
  • [27] Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram
    Attia, Zachi I.
    Kapa, Suraj
    Lopez-Jimenez, Francisco
    McKie, Paul M.
    Ladewig, Dorothy J.
    Satam, Gaurav
    Pellikka, Patricia A.
    Enriquez-Sarano, Maurice
    Noseworthy, Peter A.
    Munger, Thomas M.
    Asirvatham, Samuel J.
    Scott, Christopher G.
    Carter, Rickey E.
    Friedman, Paul A.
    [J]. NATURE MEDICINE, 2019, 25 (01) : 70 - +
  • [28] Artificial Intelligence-Enabled Assessment of the Heart Rate Corrected QT Interval Using a Mobile Electrocardiogram Device
    Giudicessi, John R.
    Schram, Matthew
    Bos, J. Martijn
    Galloway, Conner D.
    Shreibati, Jacqueline B.
    Johnson, Patrick W.
    Carter, Rickey E.
    Disrud, Levi W.
    Kleiman, Robert
    Attia, Zachi, I
    Noseworthy, Peter A.
    Friedman, Paul A.
    Albert, David E.
    Ackerman, Michael J.
    [J]. CIRCULATION, 2021, 143 (13) : 1274 - 1286
  • [29] High-performance piezoelectric yarns for artificial intelligence-enabled wearable sensing and classification
    Kim, Dabin
    Yang, Ziyue
    Cho, Jaewon
    Park, Donggeun
    Kim, Dong Hwi
    Lee, Jinkee
    Ryu, Seunghwa
    Kim, Sang-Woo
    Kim, Miso
    [J]. ECOMAT, 2023, 5 (08)
  • [30] Artificial intelligence-enabled coconut tree disease detection and classification model for smart agriculture
    Maray, Mohammed
    Albraikan, Amani Abdulrahman
    Alotaibi, Saud S.
    Alabdan, Rana
    Al Duhayyim, Mesfer
    Al-Azzawi, Waleed Khaild
    Alkhayyat, Ahmed
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2022, 104