Suboptimal Chest Radiography and Artificial Intelligence: The Problem and the Solution

被引:2
|
作者
Dasegowda, Giridhar [1 ,2 ,3 ]
Kalra, Mannudeep K. [1 ,2 ,3 ]
Abi-Ghanem, Alain S. [4 ]
Arru, Chiara D. [5 ]
Bernardo, Monica [6 ,7 ]
Saba, Luca [8 ]
Segota, Doris [9 ]
Tabrizi, Zhale
Viswamitra, Sanjaya [10 ]
Kaviani, Parisa [1 ,2 ,3 ]
Karout, Lina [1 ,2 ,3 ]
Dreyer, Keith J. [1 ,2 ,3 ]
机构
[1] Massachusetts Gen Hosp, Dept Radiol, Boston, MA 02114 USA
[2] Harvard Med Sch, Boston, MA 02114 USA
[3] Mass Gen Brigham Data Sci Off DSO, Boston, MA 02114 USA
[4] Amer Univ, Dept Diagnost Radiol, Beirut Med Ctr, Beirut 110236, Lebanon
[5] Azienda Osped G Brotzu, Dept Radiol, I-09134 Cagliari, Italy
[6] UNIMED, Hosp Miguel Soeiro, Dept Radiol, BR-18052210 Sorocaba, Brazil
[7] Pontificia Univ Catholic Sao Paulo, Dept Radiol, BR-05014901 Sao Paulo, Brazil
[8] Azienda Osped Univ Cagliari, Dept Radiol, I-09123 Cagliari, Italy
[9] Clin Hosp Ctr Rijeka, Med Phys & Radiat Protect Dept, Rijeka 51000, Croatia
[10] Iran Univ Med Sci, Radiol Dept, Tehran 560066, Iran
关键词
artificial intelligence; chest X-ray; computer-assisted image processing; quality improvement; radiography; DIGITAL RADIOGRAPHY; REJECT ANALYSIS; TRENDS;
D O I
10.3390/diagnostics13030412
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Chest radiographs (CXR) are the most performed imaging tests and rank high among the radiographic exams with suboptimal quality and high rejection rates. Suboptimal CXRs can cause delays in patient care and pitfalls in radiographic interpretation, given their ubiquitous use in the diagnosis and management of acute and chronic ailments. Suboptimal CXRs can also compound and lead to high inter-radiologist variations in CXR interpretation. While advances in radiography with transitions to computerized and digital radiography have reduced the prevalence of suboptimal exams, the problem persists. Advances in machine learning and artificial intelligence (AI), particularly in the radiographic acquisition, triage, and interpretation of CXRs, could offer a plausible solution for suboptimal CXRs. We review the literature on suboptimal CXRs and the potential use of AI to help reduce the prevalence of suboptimal CXRs.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Artificial Intelligence and the Problem of Judgment
    Pamuk, Zeynep
    ETHICS & INTERNATIONAL AFFAIRS, 2023, 37 (02) : 232 - 243
  • [42] Knowledge, perceptions, and expectations of Artificial intelligence in radiography practice: A global radiography workforce survey
    Akudjedu, Theophilus N.
    Torre, Sofia
    Khine, Ricardo
    Katsifarakis, Dimitris
    Newman, Donna
    Malamateniou, Christina
    JOURNAL OF MEDICAL IMAGING AND RADIATION SCIENCES, 2023, 54 (01) : 104 - 116
  • [43] Successful Implementation of an Artificial Intelligence-Based Computer-Aided Detection System for Chest Radiography in Daily Clinical Practice
    Lee, Seungsoo
    Shin, Hyun Joo
    Kim, Sungwon
    Kim, Eun-Kyung
    KOREAN JOURNAL OF RADIOLOGY, 2022, 23 (09) : 847 - 852
  • [44] Artificial intelligence for the detection of vertebral fractures on plain spinal radiography
    Kazuma Murata
    Kenji Endo
    Takato Aihara
    Hidekazu Suzuki
    Yasunobu Sawaji
    Yuji Matsuoka
    Hirosuke Nishimura
    Taichiro Takamatsu
    Takamitsu Konishi
    Asato Maekawa
    Hideya Yamauchi
    Kei Kanazawa
    Hiroo Endo
    Hanako Tsuji
    Shigeru Inoue
    Noritoshi Fukushima
    Hiroyuki Kikuchi
    Hiroki Sato
    Kengo Yamamoto
    Scientific Reports, 10
  • [45] Current applications and development of artificial intelligence for digital dental radiography
    Putra, Ramadhan Hardani
    Doi, Chiaki
    Yoda, Nobuhiro
    Astuti, Eha Renwi
    Sasaki, Keiichi
    DENTOMAXILLOFACIAL RADIOLOGY, 2022, 51 (01)
  • [46] Artificial intelligence for the detection of vertebral fractures on plain spinal radiography
    Murata, Kazuma
    Endo, Kenji
    Aihara, Takato
    Suzuki, Hidekazu
    Sawaji, Yasunobu
    Matsuoka, Yuji
    Nishimura, Hirosuke
    Takamatsu, Taichiro
    Konishi, Takamitsu
    Maekawa, Asato
    Yamauchi, Hideya
    Kanazawa, Kei
    Endo, Hiroo
    Tsuji, Hanako
    Inoue, Shigeru
    Fukushima, Noritoshi
    Kikuchi, Hiroyuki
    Sato, Hiroki
    Yamamoto, Kengo
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [47] A solution to anisotropic suboptimal filtering problem by convex optimization
    V. N. Timin
    M. M. Tchaikovsky
    A. P. Kurdyukov
    Doklady Mathematics, 2012, 85 : 443 - 445
  • [48] A Solution to Anisotropic Suboptimal Filtering Problem by Convex Optimization
    Timin, V. N.
    Tchaikovsky, M. M.
    Kurdyukov, A. P.
    DOKLADY MATHEMATICS, 2012, 85 (03) : 443 - 445
  • [49] The radiography of the chest
    Overend, W
    LANCET, 1921, 1 : 98 - 98
  • [50] Chest radiography
    Ravin, CE
    Chotas, HG
    RADIOLOGY, 1997, 204 (03) : 593 - 600