Suboptimal Chest Radiography and Artificial Intelligence: The Problem and the Solution

被引:2
|
作者
Dasegowda, Giridhar [1 ,2 ,3 ]
Kalra, Mannudeep K. [1 ,2 ,3 ]
Abi-Ghanem, Alain S. [4 ]
Arru, Chiara D. [5 ]
Bernardo, Monica [6 ,7 ]
Saba, Luca [8 ]
Segota, Doris [9 ]
Tabrizi, Zhale
Viswamitra, Sanjaya [10 ]
Kaviani, Parisa [1 ,2 ,3 ]
Karout, Lina [1 ,2 ,3 ]
Dreyer, Keith J. [1 ,2 ,3 ]
机构
[1] Massachusetts Gen Hosp, Dept Radiol, Boston, MA 02114 USA
[2] Harvard Med Sch, Boston, MA 02114 USA
[3] Mass Gen Brigham Data Sci Off DSO, Boston, MA 02114 USA
[4] Amer Univ, Dept Diagnost Radiol, Beirut Med Ctr, Beirut 110236, Lebanon
[5] Azienda Osped G Brotzu, Dept Radiol, I-09134 Cagliari, Italy
[6] UNIMED, Hosp Miguel Soeiro, Dept Radiol, BR-18052210 Sorocaba, Brazil
[7] Pontificia Univ Catholic Sao Paulo, Dept Radiol, BR-05014901 Sao Paulo, Brazil
[8] Azienda Osped Univ Cagliari, Dept Radiol, I-09123 Cagliari, Italy
[9] Clin Hosp Ctr Rijeka, Med Phys & Radiat Protect Dept, Rijeka 51000, Croatia
[10] Iran Univ Med Sci, Radiol Dept, Tehran 560066, Iran
关键词
artificial intelligence; chest X-ray; computer-assisted image processing; quality improvement; radiography; DIGITAL RADIOGRAPHY; REJECT ANALYSIS; TRENDS;
D O I
10.3390/diagnostics13030412
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Chest radiographs (CXR) are the most performed imaging tests and rank high among the radiographic exams with suboptimal quality and high rejection rates. Suboptimal CXRs can cause delays in patient care and pitfalls in radiographic interpretation, given their ubiquitous use in the diagnosis and management of acute and chronic ailments. Suboptimal CXRs can also compound and lead to high inter-radiologist variations in CXR interpretation. While advances in radiography with transitions to computerized and digital radiography have reduced the prevalence of suboptimal exams, the problem persists. Advances in machine learning and artificial intelligence (AI), particularly in the radiographic acquisition, triage, and interpretation of CXRs, could offer a plausible solution for suboptimal CXRs. We review the literature on suboptimal CXRs and the potential use of AI to help reduce the prevalence of suboptimal CXRs.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Artificial Intelligence Framework for Efficient Detection and Classification of Pneumonia Using Chest Radiography Images
    Ali Mohammad Alqudah
    Shoroq Qazan
    Ihssan S. Masad
    Journal of Medical and Biological Engineering, 2021, 41 : 599 - 609
  • [22] Artificial intelligence solution to transmission loss allocation problem
    Choudhury, N. B. Dev
    Goswami, S. K.
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (04) : 3757 - 3764
  • [23] Use of Artificial Intelligence as a Problem Solution for Maritime Transport
    Jurdana, Irena
    Krylov, Artem
    Yamnenko, Julia
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2020, 8 (03)
  • [24] ARTIFICIAL INTELLIGENCE OR THE ALGORITHMIZATION OF LIFE AND JUSTICE: SOLUTION OR PROBLEM?
    Barona Vilar, Silvia
    REVISTA BOLIVIANA DE DERECHO, 2019, (28) : 18 - 49
  • [25] Artificial intelligence solution to electricity price forecasting problem
    Georgilakis, Pavlos S.
    APPLIED ARTIFICIAL INTELLIGENCE, 2007, 21 (08) : 707 - 727
  • [26] Evaluating artificial intelligence for comparative radiography
    Gomez, Oscar
    Mesejo, Pablo
    Ibanez, Oscar
    Valsecchi, Andrea
    Bermejo, Enrique
    Cerezo, Andrea
    Perez, Jose
    Aleman, Inmaculada
    Kahana, Tzipi
    Damas, Sergio
    Cordon, Oscar
    INTERNATIONAL JOURNAL OF LEGAL MEDICINE, 2023, 138 (1) : 307 - 327
  • [27] Evaluating artificial intelligence for comparative radiography
    Óscar Gómez
    Pablo Mesejo
    Óscar Ibáñez
    Andrea Valsecchi
    Enrique Bermejo
    Andrea Cerezo
    José Pérez
    Inmaculada Alemán
    Tzipi Kahana
    Sergio Damas
    Óscar Cordón
    International Journal of Legal Medicine, 2024, 138 : 307 - 327
  • [28] Challenges of using artificial intelligence to detect valvular heart disease from chest radiography – Authors' reply
    Ueda, Daiju
    Ehara, Shoichi
    Yamamoto, Akira
    Walston, Shannon L
    Shimono, Taro
    Miki, Yukio
    The Lancet Digital Health, 2024, 6 (01):
  • [29] AIDCOV: An Interpretable Artificial Intelligence Model for Detection of COVID-19 from Chest Radiography Images
    Zokaeinikoo, Maryam
    Kazemian, Pooyan
    Mitra, Prasenjit
    Kumara, Soundar
    ACM TRANSACTIONS ON MANAGEMENT INFORMATION SYSTEMS, 2021, 12 (04)
  • [30] Suboptimal solution of the problem of M machines
    Miretskii, IY
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2004, 43 (01) : 104 - 112