Spatiotemporal modelling of PM2.5 concentrations in Lombardy (Italy): a comparative study

被引:0
|
作者
Otto, Philipp [1 ]
Moro, Alessandro Fusta [2 ]
Rodeschini, Jacopo [2 ]
Shaboviq, Qendrim [3 ]
Ignaccolo, Rosaria [4 ]
Golini, Natalia [4 ]
Cameletti, Michela [2 ]
Maranzano, Paolo [5 ,6 ]
Finazzi, Francesco [2 ]
Fasso, Alessandro [2 ]
机构
[1] Univ Glasgow, Sch Math & Stat, Univ Pl, Glasgow City G12 8QQ, Scotland
[2] Univ Bergamo, Dept Econ, Via Caniana 2, I-24127 Bergamo, Italy
[3] Leibniz Univ Hannover, Inst Cartog & Geoinformat, Hannover, Germany
[4] Univ Turin, Dept Econ & Stat Cognetti de Martiis, Lungo Dora Siena 100A, I-10153 Turin, Italy
[5] Univ Milano Bicocca, Dept Econ Management & Stat, Piazza Ateneo Nuovo 1, I-20126 Milan, Italy
[6] Fdn Eni Enrico Mattei FEEM, Corso Magenta 63, I-20123 Milan, Italy
关键词
Air pollution; Geostatistics; Generalised additive mixed model; Hidden dynamic geostatistical model; Machine learning; Random forest spatiotemporal kriging; Spatiotemporal process; MAXIMUM-LIKELIHOOD-ESTIMATION; RANDOM-FOREST; AIR-QUALITY; PARTICULATE MATTER; PM2.5;
D O I
10.1007/s10651-023-00589-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study presents a comparative analysis of three predictive models with an increasing degree of flexibility: hidden dynamic geostatistical models (HDGM), generalised additive mixed models (GAMM), and the random forest spatiotemporal kriging models (RFSTK). These models are evaluated for their effectiveness in predicting PM2.5 concentrations in Lombardy (North Italy) from 2016 to 2020. Despite differing methodologies, all models demonstrate proficient capture of spatiotemporal patterns within air pollution data with similar out-of-sample performance. Furthermore, the study delves into station-specific analyses, revealing variable model performance contingent on localised conditions. Model interpretation, facilitated by parametric coefficient analysis and partial dependence plots, unveils consistent associations between predictor variables and PM2.5 concentrations. Despite nuanced variations in modelling spatiotemporal correlations, all models effectively accounted for the underlying dependence. In summary, this study underscores the efficacy of conventional techniques in modelling correlated spatiotemporal data, concurrently highlighting the complementary potential of Machine Learning and classical statisti-cal approaches.
引用
收藏
页码:245 / 272
页数:28
相关论文
共 50 条
  • [41] Spatiotemporal Prediction of PM2.5 Concentrations at Different time Granularities Using IDW-BLSTM
    Ma, Jun
    Ding, Yuexiong
    Gan, Vincent J. L.
    Lin, Changqing
    Wan, Zhiwei
    [J]. IEEE ACCESS, 2019, 7 : 107897 - 107907
  • [42] Satellite-derived spatiotemporal PM2.5 concentrations and variations from 2006 to 2017 in China
    Xue, Wenhao
    Zhang, Jing
    Zhong, Chao
    Ji, Duoying
    Huang, Wei
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 712
  • [43] Estimating PM2.5 concentrations in Northeastern China with full spatiotemporal coverage, 2005-2016
    Meng, Xia
    Liu, Cong
    Zhang, Lina
    Wang, Weidong
    Stowell, Jennifer
    Kan, Haidong
    Liu, Yang
    [J]. REMOTE SENSING OF ENVIRONMENT, 2021, 253
  • [44] Satellite-Based Spatiotemporal Trends in PM2.5 Concentrations: China, 2004-2013
    Ma, Zongwei
    Hu, Xuefei
    Sayer, Andrew M.
    Levy, Robert
    Zhang, Qiang
    Xue, Yingang
    Tong, Shilu
    Bi, Jun
    Huang, Lei
    Liu, Yang
    [J]. ENVIRONMENTAL HEALTH PERSPECTIVES, 2016, 124 (02) : 184 - 192
  • [45] Spatiotemporal variations and connections of single and multiple meteorological factors on PM2.5 concentrations in Xi'an, China
    Zhang, Xiaoxia
    Xu, Haidong
    Liang, Dong
    [J]. ATMOSPHERIC ENVIRONMENT, 2022, 275
  • [46] Spatiotemporal Variations and Influencing Factors Analysis of PM2.5 Concentrations in Jilin Province, Northeast China
    Xin Wen
    Pingyu Zhang
    Daqian Liu
    [J]. Chinese Geographical Science, 2018, 28 : 810 - 822
  • [47] Spatiotemporal Variations and Influencing Factors Analysis of PM2.5 Concentrations in Jilin Province,Northeast China
    WEN Xin
    ZHANG Pingyu
    LIU Daqian
    [J]. Chinese Geographical Science, 2018, (05) : 810 - 822
  • [48] A comparative study of PM2.5 ambient aerosol chemical databases
    Wongphatarakul, V
    Friedlander, SK
    Pinto, JP
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1998, 32 (24) : 3926 - 3934
  • [49] Spatiotemporal variation in PM2.5 concentrations and their relationship with socioeconomic factors in China's major cities
    Zhao, Xiuling
    Zhou, Weiqi
    Han, Lijian
    Locke, Dexter
    [J]. ENVIRONMENT INTERNATIONAL, 2019, 133
  • [50] Modelling driving factors of PM2.5 concentrations in port cities of the Yangtze River Delta
    Zhang, Yang
    Zhou, Rui
    Hu, Daoxian
    Chen, Jihong
    Xu, Lang
    [J]. MARINE POLLUTION BULLETIN, 2022, 184