机构:
Univ Turin, Dept Econ & Stat Cognetti de Martiis, Lungo Dora Siena 100A, I-10153 Turin, ItalyUniv Glasgow, Sch Math & Stat, Univ Pl, Glasgow City G12 8QQ, Scotland
Ignaccolo, Rosaria
[4
]
Golini, Natalia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Turin, Dept Econ & Stat Cognetti de Martiis, Lungo Dora Siena 100A, I-10153 Turin, ItalyUniv Glasgow, Sch Math & Stat, Univ Pl, Glasgow City G12 8QQ, Scotland
Golini, Natalia
[4
]
Cameletti, Michela
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bergamo, Dept Econ, Via Caniana 2, I-24127 Bergamo, ItalyUniv Glasgow, Sch Math & Stat, Univ Pl, Glasgow City G12 8QQ, Scotland
Cameletti, Michela
[2
]
论文数: 引用数:
h-index:
机构:
Maranzano, Paolo
[5
,6
]
Finazzi, Francesco
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bergamo, Dept Econ, Via Caniana 2, I-24127 Bergamo, ItalyUniv Glasgow, Sch Math & Stat, Univ Pl, Glasgow City G12 8QQ, Scotland
Finazzi, Francesco
[2
]
Fasso, Alessandro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bergamo, Dept Econ, Via Caniana 2, I-24127 Bergamo, ItalyUniv Glasgow, Sch Math & Stat, Univ Pl, Glasgow City G12 8QQ, Scotland
Fasso, Alessandro
[2
]
机构:
[1] Univ Glasgow, Sch Math & Stat, Univ Pl, Glasgow City G12 8QQ, Scotland
This study presents a comparative analysis of three predictive models with an increasing degree of flexibility: hidden dynamic geostatistical models (HDGM), generalised additive mixed models (GAMM), and the random forest spatiotemporal kriging models (RFSTK). These models are evaluated for their effectiveness in predicting PM2.5 concentrations in Lombardy (North Italy) from 2016 to 2020. Despite differing methodologies, all models demonstrate proficient capture of spatiotemporal patterns within air pollution data with similar out-of-sample performance. Furthermore, the study delves into station-specific analyses, revealing variable model performance contingent on localised conditions. Model interpretation, facilitated by parametric coefficient analysis and partial dependence plots, unveils consistent associations between predictor variables and PM2.5 concentrations. Despite nuanced variations in modelling spatiotemporal correlations, all models effectively accounted for the underlying dependence. In summary, this study underscores the efficacy of conventional techniques in modelling correlated spatiotemporal data, concurrently highlighting the complementary potential of Machine Learning and classical statisti-cal approaches.
机构:
Korea Univ, Dept Artificial Intelligence, Seoul 02841, South Korea
Korea Environm Inst, Ctr Environm Data Strategy, Sejong 30147, South KoreaKorea Univ, Dept Artificial Intelligence, Seoul 02841, South Korea
Kim, Do-Yeon
Jin, Dae-Yong
论文数: 0引用数: 0
h-index: 0
机构:
Korea Environm Inst, Ctr Environm Data Strategy, Sejong 30147, South KoreaKorea Univ, Dept Artificial Intelligence, Seoul 02841, South Korea
Jin, Dae-Yong
Suk, Heung-Il
论文数: 0引用数: 0
h-index: 0
机构:
Korea Univ, Dept Artificial Intelligence, Seoul 02841, South Korea
Korea Univ, Dept Brain & Cognit Engn, Seoul 02841, South KoreaKorea Univ, Dept Artificial Intelligence, Seoul 02841, South Korea
机构:
Shanghai Maritime Univ, Coll Transport & Commun, Shanghai 201306, Peoples R ChinaShanghai Maritime Univ, Coll Transport & Commun, Shanghai 201306, Peoples R China
Yang, Yuanyuan
Chen, Jihong
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Coll Management, Shenzhen 518073, Peoples R China
Shenzhen Int Maritime Inst, Shenzhen 518081, Peoples R China
Xian Int Univ, Business Sch, Xian 710077, Peoples R ChinaShanghai Maritime Univ, Coll Transport & Commun, Shanghai 201306, Peoples R China
Chen, Jihong
Shi, Meiyu
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Maritime Univ, Coll Transport & Commun, Shanghai 201306, Peoples R ChinaShanghai Maritime Univ, Coll Transport & Commun, Shanghai 201306, Peoples R China