Spatiotemporal modelling of PM2.5 concentrations in Lombardy (Italy): a comparative study

被引:0
|
作者
Otto, Philipp [1 ]
Moro, Alessandro Fusta [2 ]
Rodeschini, Jacopo [2 ]
Shaboviq, Qendrim [3 ]
Ignaccolo, Rosaria [4 ]
Golini, Natalia [4 ]
Cameletti, Michela [2 ]
Maranzano, Paolo [5 ,6 ]
Finazzi, Francesco [2 ]
Fasso, Alessandro [2 ]
机构
[1] Univ Glasgow, Sch Math & Stat, Univ Pl, Glasgow City G12 8QQ, Scotland
[2] Univ Bergamo, Dept Econ, Via Caniana 2, I-24127 Bergamo, Italy
[3] Leibniz Univ Hannover, Inst Cartog & Geoinformat, Hannover, Germany
[4] Univ Turin, Dept Econ & Stat Cognetti de Martiis, Lungo Dora Siena 100A, I-10153 Turin, Italy
[5] Univ Milano Bicocca, Dept Econ Management & Stat, Piazza Ateneo Nuovo 1, I-20126 Milan, Italy
[6] Fdn Eni Enrico Mattei FEEM, Corso Magenta 63, I-20123 Milan, Italy
关键词
Air pollution; Geostatistics; Generalised additive mixed model; Hidden dynamic geostatistical model; Machine learning; Random forest spatiotemporal kriging; Spatiotemporal process; MAXIMUM-LIKELIHOOD-ESTIMATION; RANDOM-FOREST; AIR-QUALITY; PARTICULATE MATTER; PM2.5;
D O I
10.1007/s10651-023-00589-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study presents a comparative analysis of three predictive models with an increasing degree of flexibility: hidden dynamic geostatistical models (HDGM), generalised additive mixed models (GAMM), and the random forest spatiotemporal kriging models (RFSTK). These models are evaluated for their effectiveness in predicting PM2.5 concentrations in Lombardy (North Italy) from 2016 to 2020. Despite differing methodologies, all models demonstrate proficient capture of spatiotemporal patterns within air pollution data with similar out-of-sample performance. Furthermore, the study delves into station-specific analyses, revealing variable model performance contingent on localised conditions. Model interpretation, facilitated by parametric coefficient analysis and partial dependence plots, unveils consistent associations between predictor variables and PM2.5 concentrations. Despite nuanced variations in modelling spatiotemporal correlations, all models effectively accounted for the underlying dependence. In summary, this study underscores the efficacy of conventional techniques in modelling correlated spatiotemporal data, concurrently highlighting the complementary potential of Machine Learning and classical statisti-cal approaches.
引用
收藏
页码:245 / 272
页数:28
相关论文
共 50 条
  • [31] Measurements and modelling of PM2.5 concentrations near a major road in Kuopio, Finland
    Tiitta, P
    Raunemaa, T
    Tissari, J
    Yli-Tuomi, T
    Leskinen, A
    Kukkonen, J
    Härkönen, J
    Karppinen, A
    [J]. ATMOSPHERIC ENVIRONMENT, 2002, 36 (25) : 4057 - 4068
  • [32] Geospatial Modelling for Estimation of PM2.5 Concentrations in Two Megacities in Peninsular India
    Lavanyaa, V. P.
    Varshini, S.
    Mitra, Souvik Sankar
    Hungund, Kiran M.
    Majumdar, Rudrodip
    Srikanth, R.
    [J]. AEROSOL AND AIR QUALITY RESEARCH, 2022, 22 (07)
  • [33] Spatiotemporal estimation of historical PM2.5 concentrations using PM10, meteorological variables, and spatial effect
    Li, Lianfa
    Wu, Anna H.
    Cheng, Iona
    Chen, Jiu-Chivan
    Wu, Jun
    [J]. ATMOSPHERIC ENVIRONMENT, 2017, 166 : 182 - 191
  • [34] Spatiotemporal variation in residential PM2.5 and PM10 concentrations in China: National on-site survey
    Zhu, Yuan-duo
    Fan, Lin
    Wang, Jiao
    Yang, Wen-jing
    Li, Li
    Zhang, Yu-jing
    Yang, Yu-yan
    Li, Xu
    Yan, Xu
    Yao, Xiao-yuan
    Wang, Xian-liang
    [J]. ENVIRONMENTAL RESEARCH, 2021, 202
  • [35] Forecasting hourly values of PM2.5 concentrations
    Perez, P.
    [J]. SUSTAINABLE DEVELOPMENT AND PLANNING VIII, 2017, 210 : 653 - 661
  • [36] Synoptic evaluation of regional PM2.5 concentrations
    Walsh, Kenneth J.
    Milligan, Matthew
    Sherwell, John
    [J]. ATMOSPHERIC ENVIRONMENT, 2009, 43 (03) : 594 - 603
  • [37] On the source contribution to Beijing PM2.5 concentrations
    Zikova, Nadezda
    Wang, Yungang
    Yang, Fumo
    Li, Xinghua
    Tian, Mi
    Hopke, Philip K.
    [J]. ATMOSPHERIC ENVIRONMENT, 2016, 134 : 84 - 95
  • [38] Spatiotemporal graph neural networks for predicting mid-to-long-term PM2.5 concentrations
    Kim, Do-Yeon
    Jin, Dae-Yong
    Suk, Heung-Il
    [J]. JOURNAL OF CLEANER PRODUCTION, 2023, 425
  • [39] Spatiotemporal heterogeneity of the relationships between PM2.5 concentrations and their drivers in China's coastal ports
    Zhang, Yang
    Yang, Yuanyuan
    Chen, Jihong
    Shi, Meiyu
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 345
  • [40] Spatiotemporal Variations and Influencing Factors Analysis of PM2.5 Concentrations in Jilin Province, Northeast China
    Wen Xin
    Zhang Pingyu
    Liu Daqian
    [J]. CHINESE GEOGRAPHICAL SCIENCE, 2018, 28 (05) : 810 - 822