Spatiotemporal modelling of PM2.5 concentrations in Lombardy (Italy): a comparative study

被引:0
|
作者
Otto, Philipp [1 ]
Moro, Alessandro Fusta [2 ]
Rodeschini, Jacopo [2 ]
Shaboviq, Qendrim [3 ]
Ignaccolo, Rosaria [4 ]
Golini, Natalia [4 ]
Cameletti, Michela [2 ]
Maranzano, Paolo [5 ,6 ]
Finazzi, Francesco [2 ]
Fasso, Alessandro [2 ]
机构
[1] Univ Glasgow, Sch Math & Stat, Univ Pl, Glasgow City G12 8QQ, Scotland
[2] Univ Bergamo, Dept Econ, Via Caniana 2, I-24127 Bergamo, Italy
[3] Leibniz Univ Hannover, Inst Cartog & Geoinformat, Hannover, Germany
[4] Univ Turin, Dept Econ & Stat Cognetti de Martiis, Lungo Dora Siena 100A, I-10153 Turin, Italy
[5] Univ Milano Bicocca, Dept Econ Management & Stat, Piazza Ateneo Nuovo 1, I-20126 Milan, Italy
[6] Fdn Eni Enrico Mattei FEEM, Corso Magenta 63, I-20123 Milan, Italy
关键词
Air pollution; Geostatistics; Generalised additive mixed model; Hidden dynamic geostatistical model; Machine learning; Random forest spatiotemporal kriging; Spatiotemporal process; MAXIMUM-LIKELIHOOD-ESTIMATION; RANDOM-FOREST; AIR-QUALITY; PARTICULATE MATTER; PM2.5;
D O I
10.1007/s10651-023-00589-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study presents a comparative analysis of three predictive models with an increasing degree of flexibility: hidden dynamic geostatistical models (HDGM), generalised additive mixed models (GAMM), and the random forest spatiotemporal kriging models (RFSTK). These models are evaluated for their effectiveness in predicting PM2.5 concentrations in Lombardy (North Italy) from 2016 to 2020. Despite differing methodologies, all models demonstrate proficient capture of spatiotemporal patterns within air pollution data with similar out-of-sample performance. Furthermore, the study delves into station-specific analyses, revealing variable model performance contingent on localised conditions. Model interpretation, facilitated by parametric coefficient analysis and partial dependence plots, unveils consistent associations between predictor variables and PM2.5 concentrations. Despite nuanced variations in modelling spatiotemporal correlations, all models effectively accounted for the underlying dependence. In summary, this study underscores the efficacy of conventional techniques in modelling correlated spatiotemporal data, concurrently highlighting the complementary potential of Machine Learning and classical statisti-cal approaches.
引用
收藏
页码:245 / 272
页数:28
相关论文
共 50 条
  • [1] An Ensemble Spatiotemporal Model for Predicting PM2.5 Concentrations
    Li, Lianfa
    Zhang, Jiehao
    Qiu, Wenyang
    Wang, Jinfeng
    Fang, Ying
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2017, 14 (05)
  • [2] PM2.5 source apportionment in Lombardy (Italy): Comparison of receptor and chemistry-transport modelling results
    Pirovano, G.
    Colombi, C.
    Balzarini, A.
    Riva, G. M.
    Gianelle, V.
    Lonati, G.
    [J]. ATMOSPHERIC ENVIRONMENT, 2015, 106 : 56 - 70
  • [3] Spatiotemporal evolution of PM2.5 concentrations in urban agglomerations of China
    Zhenbo Wang
    Longwu Liang
    Xujing Wang
    [J]. Journal of Geographical Sciences, 2021, 31 : 878 - 898
  • [4] Spatiotemporal evolution of PM2.5 concentrations in urban agglomerations of China
    Wang Zhenbo
    Liang Longwu
    Wang Xujing
    [J]. JOURNAL OF GEOGRAPHICAL SCIENCES, 2021, 31 (06) : 878 - 898
  • [5] Spatiotemporal Features and Socioeconomic Drivers of PM2.5 Concentrations in China
    Li, Deshan
    Zhao, Yanfen
    Wu, Rongwei
    Dong, Jiefang
    [J]. SUSTAINABILITY, 2019, 11 (04)
  • [6] Spatiotemporal evolution of PM2.5 concentrations in urban agglomerations of China
    WANG Zhenbo
    LIANG Longwu
    WANG Xujing
    [J]. Journal of Geographical Sciences, 2021, 31 (06) : 878 - 898
  • [7] Spatiotemporal Variations of Indoor PM2.5 Concentrations in Nanjing, China
    Shao, Zhijuan
    Yin, Xiangjun
    Bi, Jun
    Ma, Zongwei
    Wang, Jinnan
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2019, 16 (01)
  • [8] Spatiotemporal variations and influencing factors of PM2.5 concentrations in Beijing, China
    Zhang, Licheng
    An, Ji
    Liu, Mengyang
    Li, Zhiwei
    Liu, Yue
    Tao, Lixin
    Liu, Xiangtong
    Zhang, Feng
    Zheng, Deqiang
    Gao, Qi
    Guo, Xiuhua
    Luo, Yanxia
    [J]. ENVIRONMENTAL POLLUTION, 2020, 262
  • [9] Spatiotemporal Patterns and Cause Analysis of PM2.5 Concentrations in Beijing, China
    Tian, Guangjin
    Liu, Xiaojuan
    Kong, Lingqiang
    [J]. ADVANCES IN METEOROLOGY, 2018, 2018
  • [10] Spatiotemporal Characterization of Ambient PM2.5 Concentrations in Shandong Province (China)
    Yang, Yong
    Christakos, George
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (22) : 13431 - 13438