Data-driven model selection for same-realization predictions in autoregressive processes

被引:0
|
作者
Kamila, Kare [1 ]
机构
[1] Univ Paris 1 Pantheon Sorbonne, SAMM, 90 Rue Tolbiac, F-75634 Paris, France
关键词
Model selection; Oracle inequality; Efficiency; Autoregressive process; Data driven; ORDER; REGRESSION;
D O I
10.1007/s10463-022-00855-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is about the one-step ahead prediction of the future of observations drawn from an infinite-order autoregressive AR(infinity) process. It aims to design penalties (fully data driven) ensuring that the selected model verifies the efficiency property but in the non-asymptotic framework. We show that the excess risk of the selected estimator enjoys the best bias-variance trade-off over the considered collection. To achieve these results, we needed to overcome the dependence difficulties by following a classical approach which consists in restricting to a set where the empirical covariance matrix is equivalent to the theoretical one. We show that this event happens with probability larger than 1-c(0)/n(2) with c(0) > 0. The proposed data-driven criteria are based on the minimization of the penalized criterion akin to the Mallows's C-p.
引用
收藏
页码:567 / 592
页数:26
相关论文
共 50 条
  • [11] Data-Driven Online Model Selection With Regret Guarantees
    Pacchiano, Aldo
    Dann, Christoph
    Gentile, Claudio
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [12] Data-Driven Approach for Imperfect Maintenance Model Selection
    Liu, Yu
    Huang, Hong-Zhong
    Zhang, Xiaoling
    [J]. ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM (RAMS), 2011 PROCEEDINGS, 2011,
  • [13] A DATA-DRIVEN MADM MODEL FOR PERSONNEL SELECTION AND IMPROVEMENT
    Chuang, Yen-Ching
    Hu, Shu-Kung
    Liou, James J. H.
    Tzeng, Gwo-Hshiung
    [J]. TECHNOLOGICAL AND ECONOMIC DEVELOPMENT OF ECONOMY, 2020, 26 (04) : 751 - 784
  • [14] A Big Data-driven Model for the Optimization of Healthcare Processes
    Koufi, Vassiliki
    Malamateniou, Flora
    Vassilacopoulos, George
    [J]. DIGITAL HEALTHCARE EMPOWERING EUROPEANS, 2015, 210 : 697 - 701
  • [15] Data-Driven Model Predictive Monitoring for Dynamic Processes
    Jiang, Qingchao
    Yi, Huaikuan
    Yan, Xuefeng
    Zhang, Xinmin
    Huang, Jian
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 105 - 110
  • [16] Data-driven Site Selection
    Schuh, Günther
    Gützlaff, Andreas
    Adlon, Tobias
    Schupp, Steffen
    Endrikat, Morten
    Schlosser, Tino X.
    [J]. ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 2022, 117 (05): : 258 - 263
  • [17] Data-driven choice of a model selection method in joinpoint regression
    Kim, Hyune-Ju
    Chen, Huann-Sheng
    Midthune, Douglas
    Wheeler, Bill
    Buckman, Dennis W.
    Green, Donald
    Byrne, Jeffrey
    Luo, Jun
    Feuer, Eric J.
    [J]. JOURNAL OF APPLIED STATISTICS, 2023, 50 (09) : 1992 - 2013
  • [18] A Simple Data-Driven Estimator for the Semiparametric Sample Selection Model
    Escanciano, Juan Carlos
    Zhu, Lin
    [J]. ECONOMETRIC REVIEWS, 2015, 34 (6-10) : 733 - 761
  • [19] Data-driven decision model based on dynamical classifier selection
    Xu, Che
    Fu, Chao
    Liu, Weiyong
    Sheng, Song
    Yang, Shanlin
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 212
  • [20] Data-driven model predictive quality control of batch processes
    Aumi, Siam
    Corbett, Brandon
    Clarke-Pringle, Tracy
    Mhaskar, Prashant
    [J]. AICHE JOURNAL, 2013, 59 (08) : 2852 - 2861