Understanding Biases and Disparities in Radiology AI Datasets: A Review

被引:16
|
作者
Tripathi, Satvik [1 ,7 ]
Gabriel, Kyla [2 ]
Dheer, Suhani [1 ]
Parajuli, Aastha [3 ]
Augustin, Alisha Isabelle [4 ]
Elahi, Ameena [5 ]
Awan, Omar [6 ]
Dako, Farouk [1 ]
机构
[1] Univ Penn, Sch Med, Dept Radiol, Philadelphia, PA 19104 USA
[2] Harvard Med Sch, Dept Biomed Informat, Boston, MA USA
[3] Kathmandu Univ, Sch Med Sci, Dept Radiol, Dhulikhel, Nepal
[4] Drexel Univ, Coll Engn, Philadelphia, PA USA
[5] Univ Penn Hlth Syst, Dept Informat Serv, Philadelphia, PA USA
[6] Univ Maryland, Sch Med, Dept Radiol, Baltimore, MD USA
[7] Univ Penn, Sch Med, Dept Radiol, Philadelphia, PA 19104 USA
关键词
Artificial intelligence; health equity; datasets; deep learning; radiology;
D O I
10.1016/j.jacr.2023.06.015
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) continues to show great potential in disease detection and diagnosis on medical imaging with increasingly high accuracy. An important component of AI model creation is dataset development for training, validation, and testing. Diverse and highquality datasets are critical to ensure robust and unbiased AI models that maintain validity, especially in traditionally underserved populations globally. Yet publicly available datasets demonstrate problems with quality and inclusivity. In this literature review, the authors evaluate publicly available medical imaging datasets for demographic, geographic, genetic, and disease representation or lack thereof and call for an increase emphasis on dataset development to maximize the impact of AI models.
引用
收藏
页码:836 / 841
页数:6
相关论文
共 50 条
  • [31] Estimating sampling biases in citizen science datasets
    Backstrom, Louis J.
    Callaghan, Corey T.
    Worthington, Hannah
    Fuller, Richard A.
    Johnston, Alison
    IBIS, 2025, 167 (01) : 73 - 87
  • [32] Hidden Biases in Unreliable News Detection Datasets
    Zhou, Xiang
    Elfardy, Heba
    Christodoulopoulos, Christos
    Butler, Thomas
    Bansal, Mohit
    16TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EACL 2021), 2021, : 2482 - 2492
  • [33] NLPOSITIONALITY: Characterizing Design Biases of Datasets and Models
    Santy, Sebastin
    Liang, Jenny T.
    Le Bras, Ronan
    Reinecke, Katharina
    Sap, Maarten
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, 2023, : 9080 - 9101
  • [34] Estimating sampling biases in citizen science datasets
    Backstrom, Louis J.
    Callaghan, Corey T.
    Worthington, Hannah
    Fuller, Richard A.
    Johnston, Alison
    IBIS, 2025, 167 (01) : 73 - 87
  • [35] Crowdsourcing Detection of Sampling Biases in Image Datasets
    Hu, Xiao
    Wang, Haobo
    Vegesana, Anirudh
    Dube, Somesh
    Yu, Kaiwen
    Kao, Gore
    Chen, Shuo-Han
    Lu, Yung-Hsiang
    Thiruvathukal, George K.
    Yin, Ming
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 2955 - 2961
  • [36] AI in Radiology Is a Matter of Value
    Gurvich, Leo
    APPLIED RADIOLOGY, 2021, 50 (05) : 44 - 44
  • [37] AI in Radiology - Challenges and Perspectives
    Caspers, Julian
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2024, 196 (11): : 1180 - 1181
  • [38] Grand Challenges in AI in Radiology
    Liu, Tianming
    FRONTIERS IN RADIOLOGY, 2021, 1
  • [39] How AI and Robotics Will Advance Interventional Radiology: Narrative Review and Future Perspectives
    Zhang, Jiaming
    Fang, Jiayi
    Xu, Yanneng
    Si, Guangyan
    DIAGNOSTICS, 2024, 14 (13)
  • [40] unveiling Ethical Biases in Generative AI
    Morales, Sergio
    Clariso, Robert
    Cabot, Jordi
    ERCIM NEWS, 2024, (136): : 23 - 24