Understanding Biases and Disparities in Radiology AI Datasets: A Review

被引:16
|
作者
Tripathi, Satvik [1 ,7 ]
Gabriel, Kyla [2 ]
Dheer, Suhani [1 ]
Parajuli, Aastha [3 ]
Augustin, Alisha Isabelle [4 ]
Elahi, Ameena [5 ]
Awan, Omar [6 ]
Dako, Farouk [1 ]
机构
[1] Univ Penn, Sch Med, Dept Radiol, Philadelphia, PA 19104 USA
[2] Harvard Med Sch, Dept Biomed Informat, Boston, MA USA
[3] Kathmandu Univ, Sch Med Sci, Dept Radiol, Dhulikhel, Nepal
[4] Drexel Univ, Coll Engn, Philadelphia, PA USA
[5] Univ Penn Hlth Syst, Dept Informat Serv, Philadelphia, PA USA
[6] Univ Maryland, Sch Med, Dept Radiol, Baltimore, MD USA
[7] Univ Penn, Sch Med, Dept Radiol, Philadelphia, PA 19104 USA
关键词
Artificial intelligence; health equity; datasets; deep learning; radiology;
D O I
10.1016/j.jacr.2023.06.015
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) continues to show great potential in disease detection and diagnosis on medical imaging with increasingly high accuracy. An important component of AI model creation is dataset development for training, validation, and testing. Diverse and highquality datasets are critical to ensure robust and unbiased AI models that maintain validity, especially in traditionally underserved populations globally. Yet publicly available datasets demonstrate problems with quality and inclusivity. In this literature review, the authors evaluate publicly available medical imaging datasets for demographic, geographic, genetic, and disease representation or lack thereof and call for an increase emphasis on dataset development to maximize the impact of AI models.
引用
收藏
页码:836 / 841
页数:6
相关论文
共 50 条
  • [21] Identifying and Mitigating Bias in AI-Generated Image Datasets for Better Cognitive Understanding
    Marathe, Aboli
    Desai, Aditya
    Walambe, Rahee
    Kotecha, Ketan
    INTELLIGENT AND FUZZY SYSTEMS, INFUS 2024 CONFERENCE, VOL 1, 2024, 1088 : 176 - 184
  • [22] Spectrum of Cognitive Biases in Diagnostic Radiology
    Yoon, Se-Young
    Lee, Karen S.
    Bezuidenhout, Abraham F.
    Kruskal, Jonathan B.
    RADIOGRAPHICS, 2024, 44 (07) : e230059
  • [23] Not all biases are bad: equitable and inequitable biases in machine learning and radiology
    Pot, Mirjam
    Kieusseyan, Nathalie
    Prainsack, Barbara
    INSIGHTS INTO IMAGING, 2021, 12 (01)
  • [24] Not all biases are bad: equitable and inequitable biases in machine learning and radiology
    Mirjam Pot
    Nathalie Kieusseyan
    Barbara Prainsack
    Insights into Imaging, 12
  • [25] Healthcare Disparities in Interventional Radiology
    Trivedi, Premal S.
    Guerra, Bernardo
    Kumar, Vishal
    Akinwande, Goke
    West, Derek
    Abi-Jaoudeh, Nadine
    Salazar, Gloria
    Rochon, Paul
    JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY, 2022, 33 (12) : 1459 - +
  • [26] The Datasets of Human and AI Translation
    Lau, Yoke Lian
    Chee, Shiaw Phin
    Chua, Ruth Hui Hui
    Yong, Zi Hong
    Yong, Ing Ket
    Tan, Jee Chin
    Yong, Hui Wen
    Bakar, Anna Lynn Abu
    JOURNAL OF OPEN HUMANITIES DATA, 2024, 10
  • [27] Framing racial disparities within sports related concussion (SRC): an ecological framework for understanding biases and disparities in concussion care for black athletes
    Wing, Sydney
    Caiquo, Joshua
    Butler, Chante
    Giza, Christopher
    Babikian, Talin
    INTERNATIONAL REVIEW OF PSYCHIATRY, 2024, 36 (03) : 254 - 271
  • [28] RACIAL BIASES IN MEDICINE AND HEALTHCARE DISPARITIES
    Dovidio, John F.
    Eggly, Susan
    Albrecht, Terrance L.
    Hagiwara, Nao
    Penner, Louis A.
    TPM-TESTING PSYCHOMETRICS METHODOLOGY IN APPLIED PSYCHOLOGY, 2016, 23 (04) : 489 - 510
  • [29] UNDERSTANDING COGNITIVE BIASES
    TEIGEN, KH
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 1992, 27 (3-4) : 172 - 172
  • [30] Fostering a Healthy AI Ecosystem for Radiology: Conclusions of the 2018 RSNA Summit on AI in Radiology
    Chokshi, Falgun H.
    Flanders, Adam E.
    Prevedello, Luciano M.
    Langlotz, Curtis P.
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2019, 1 (02)