Understanding Biases and Disparities in Radiology AI Datasets: A Review

被引:16
|
作者
Tripathi, Satvik [1 ,7 ]
Gabriel, Kyla [2 ]
Dheer, Suhani [1 ]
Parajuli, Aastha [3 ]
Augustin, Alisha Isabelle [4 ]
Elahi, Ameena [5 ]
Awan, Omar [6 ]
Dako, Farouk [1 ]
机构
[1] Univ Penn, Sch Med, Dept Radiol, Philadelphia, PA 19104 USA
[2] Harvard Med Sch, Dept Biomed Informat, Boston, MA USA
[3] Kathmandu Univ, Sch Med Sci, Dept Radiol, Dhulikhel, Nepal
[4] Drexel Univ, Coll Engn, Philadelphia, PA USA
[5] Univ Penn Hlth Syst, Dept Informat Serv, Philadelphia, PA USA
[6] Univ Maryland, Sch Med, Dept Radiol, Baltimore, MD USA
[7] Univ Penn, Sch Med, Dept Radiol, Philadelphia, PA 19104 USA
关键词
Artificial intelligence; health equity; datasets; deep learning; radiology;
D O I
10.1016/j.jacr.2023.06.015
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) continues to show great potential in disease detection and diagnosis on medical imaging with increasingly high accuracy. An important component of AI model creation is dataset development for training, validation, and testing. Diverse and highquality datasets are critical to ensure robust and unbiased AI models that maintain validity, especially in traditionally underserved populations globally. Yet publicly available datasets demonstrate problems with quality and inclusivity. In this literature review, the authors evaluate publicly available medical imaging datasets for demographic, geographic, genetic, and disease representation or lack thereof and call for an increase emphasis on dataset development to maximize the impact of AI models.
引用
收藏
页码:836 / 841
页数:6
相关论文
共 50 条
  • [1] Understanding and Addressing Cognitive Biases in Radiology
    Larson, David B.
    RADIOGRAPHICS, 2024, 44 (07) : e230244
  • [2] A Review of Healthcare Disparities Relevant to Interventional Radiology
    Marchak, Katherine
    Singh, Davinder
    Malavia, Mira
    Trivedi, Premal
    SEMINARS IN INTERVENTIONAL RADIOLOGY, 2023, 40 (05) : 427 - 436
  • [3] COVID-19, AI enthusiasts, and toy datasets: radiology without radiologists
    Tizhoosh, H. R.
    Fratesi, Jennifer
    EUROPEAN RADIOLOGY, 2021, 31 (05) : 3553 - 3554
  • [4] COVID-19, AI enthusiasts, and toy datasets: radiology without radiologists
    H. R. Tizhoosh
    Jennifer Fratesi
    European Radiology, 2021, 31 : 3553 - 3554
  • [5] Understanding and overcoming biases in online review systems
    Askalidis, Georgios
    Kim, Su Jung
    Malthouse, Edward C.
    DECISION SUPPORT SYSTEMS, 2017, 97 : 23 - 30
  • [6] Ethics of AI in Radiology: A Review of Ethical and Societal Implications
    Goisauf, Melanie
    Cano Abadia, Monica
    FRONTIERS IN BIG DATA, 2022, 5
  • [7] Health Care Disparities in Radiology- A Review of the Current Literature
    DeBenedectis, Carolynn M.
    Spalluto, Lucy B.
    Americo, Lisa
    Bishop, Casey
    Mian, Asim
    Sarkany, David
    Kagetsu, Nolan J.
    Slanetz, Priscilla J.
    JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2022, 19 (01) : 101 - 111
  • [8] Biases in AI Systems
    Srinivasan, Ramya
    Chander, Ajay
    COMMUNICATIONS OF THE ACM, 2021, 64 (08) : 44 - 49
  • [9] Biases in AI Systems
    Srinivasan R.
    Chander A.
    1600, Association for Computing Machinery (19): : 45 - 64
  • [10] Understanding Disparities in the Pediatric ICU: A Scoping Review
    Andrist, Erica
    Clarke, Rachel G.
    Phelps, Kayla B.
    Dews, Alyssa L.
    Rodenbough, Anna
    Rose, Jerri A.
    Zurca, Adrian D.
    Lawal, Nurah
    Maratta, Christina
    Slain, Katherine N.
    PEDIATRICS, 2024, 153 (05)