NEW CHEBYSHEV-TYPE INEQUALITIES FOR THE GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL WITH RESPECT TO AN INCREASING FUNCTION

被引:1
|
作者
Varosanec, Sanja [1 ]
机构
[1] Univ Zagreb, Dept Math, Fac Sci, Zagreb, Croatia
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2023年 / 17卷 / 04期
关键词
Generalized Riemann-Liouville fractional integral; Chebyshev-type inequality; log-convexity;
D O I
10.7153/jmi-2023-17-88
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain several results for the generalized Riemann-Liouville fractional integrals whose orders are variable. We prove Chebyshev-type inequalities and consider the log -convexity of a function whose variable is the order of the generalized Riemann-Liouville fractional integral. Obtained results are applied to some special kinds of fractional integrals.
引用
收藏
页码:1351 / 1361
页数:11
相关论文
共 50 条
  • [31] AN EXTENSION BY MEANS OF ω-WEIGHTED CLASSES OF THE GENERALIZED RIEMANN-LIOUVILLE k-FRACTIONAL INTEGRAL INEQUALITIES
    Agarwal, P.
    Restrepo, J. E.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (01): : 35 - 46
  • [32] Trapezoid type inequalities for generalized Riemann-Liouville fractional integrals of functions with bounded variation
    Dragomir, Silvestru Sever
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2020, 12 (01) : 30 - 53
  • [33] Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function
    Mohammed, Pshtiwan Othman
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (03) : 2314 - 2324
  • [34] Convexity with respect to strictly monotone function and Riemann-Liouville fractional Fejer-Hadamard inequalities
    Zhou, Shuang-Shuang
    Farid, Ghulam
    Jung, Chahn Yong
    AIMS MATHEMATICS, 2021, 6 (07): : 6975 - 6985
  • [35] Some integral inequalities for (k, s) - Riemann-Liouville fractional operators
    Houas, Mohamed
    Dahmani, Zoubir
    Sarikaya, Mehmet Zeki
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2018, 21 (7-8) : 1575 - 1585
  • [36] Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings
    Khan, Muhammad Bilal
    Treanta, Savin
    Alrweili, Hleil
    Saeed, Tareq
    Soliman, Mohamed S.
    AIMS MATHEMATICS, 2022, 7 (08): : 15659 - 15679
  • [37] The Minkowski's inequalities via Ω-Riemann-Liouville fractional integral operators
    Aljaaidi, Tariq A.
    Pachpatte, Deepak B.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (02) : 893 - 906
  • [38] Some results on integral inequalities via Riemann-Liouville fractional integrals
    Li, Xiaoling
    Qaisar, Shahid
    Nasir, Jamshed
    Butt, Saad Ihsan
    Ahmad, Farooq
    Bari, Mehwish
    Farooq, Shan E.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [39] Inequalities for generalized Riemann-Liouville fractional integrals of generalized strongly convex functions
    Farid, Ghulam
    Kwun, Young Chel
    Yasmeen, Hafsa
    Akkurt, Abdullah
    Kang, Shin Min
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [40] Chebyshev-Type Inequalities Involving (k,ψ)-Proportional Fractional Integral Operators
    Yewale, Bhagwat R.
    Pachpatte, Deepak B.
    Aljaaidi, Tariq A.
    JOURNAL OF FUNCTION SPACES, 2022, 2022