Bounds for invariants of numerical semigroups and Wilf's conjecture

被引:0
|
作者
D'Anna, Marco [1 ]
Moscariello, Alessio [1 ]
机构
[1] Univ Catania, Dipartimento Matemat & Informat, Viale Andrea Doria 6, I-95125 Catania, Italy
关键词
Wilf conjecture; Numerical semigroups; Multiplicity; Embedding dimension; Type; Almost symmetric numerical semigroup;
D O I
10.1007/s00209-023-03295-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given coprime positive integers g(1) < ... < g(e), the Frobenius number F = F(g(1),..., g(e)) is the largest integer not representable as a linear combination of g(1),..., g(e) with non-negative integer coefficients. Let n denote the number of all representable non-negative integers less than F; Wilf conjectured that F + 1 <= en. We provide bounds for g1 and for the type of the numerical semigroup S = < g(1),..., g(e)> in function of e and n, and use these bounds to prove that F + 1 <= qen, where q = [F+1/g1], and F + 1 <= en(2). Finally, we give an alternative, simpler proof for theWilf conjecture if the numerical semigroup S = < g(1),..., g(e)> is almost-symmetric.
引用
收藏
页数:5
相关论文
共 50 条