Bounds for invariants of numerical semigroups and Wilf's conjecture

被引:0
|
作者
D'Anna, Marco [1 ]
Moscariello, Alessio [1 ]
机构
[1] Univ Catania, Dipartimento Matemat & Informat, Viale Andrea Doria 6, I-95125 Catania, Italy
关键词
Wilf conjecture; Numerical semigroups; Multiplicity; Embedding dimension; Type; Almost symmetric numerical semigroup;
D O I
10.1007/s00209-023-03295-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given coprime positive integers g(1) < ... < g(e), the Frobenius number F = F(g(1),..., g(e)) is the largest integer not representable as a linear combination of g(1),..., g(e) with non-negative integer coefficients. Let n denote the number of all representable non-negative integers less than F; Wilf conjectured that F + 1 <= en. We provide bounds for g1 and for the type of the numerical semigroup S = < g(1),..., g(e)> in function of e and n, and use these bounds to prove that F + 1 <= qen, where q = [F+1/g1], and F + 1 <= en(2). Finally, we give an alternative, simpler proof for theWilf conjecture if the numerical semigroup S = < g(1),..., g(e)> is almost-symmetric.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] BOUNDS FOR THE GENUS OF NUMERICAL SEMIGROUPS
    Leher, Eli
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (05) : 827 - 834
  • [22] A graph-theoretic approach to Wilf's conjecture
    Eliahou, Shalom
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (02):
  • [23] A verification of Wilf's conjecture up to genus 100
    Delgado, Manuel
    Eliahou, Shalom
    Fromentin, Jean
    JOURNAL OF ALGEBRA, 2025, 664 : 150 - 163
  • [24] On a question of Eliahou and a conjecture of Wilf
    Manuel Delgado
    Mathematische Zeitschrift, 2018, 288 : 595 - 627
  • [25] A conjecture on Khovanov's invariants
    Garoufalidis, S
    FUNDAMENTA MATHEMATICAE, 2004, 184 : 99 - 101
  • [26] Geometrical illustration of numerical semigroups and of some of their invariants
    E. Kunz
    R. Waldi
    Semigroup Forum, 2014, 89 : 664 - 691
  • [27] Geometrical illustration of numerical semigroups and of some of their invariants
    Kunz, E.
    Waldi, R.
    SEMIGROUP FORUM, 2014, 89 (03) : 664 - 691
  • [28] On a question of Eliahou and a conjecture of Wilf
    Delgado, Manuel
    MATHEMATISCHE ZEITSCHRIFT, 2018, 288 (1-2) : 595 - 627
  • [29] The Tree of Good Semigroups in <mml:msup>N2</mml:msup> and a Generalization of the Wilf Conjecture
    Maugeri, Nicola
    Zito, Giuseppe
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (05)
  • [30] On a conjecture by Wilf about the Frobenius number
    Alessio Moscariello
    Alessio Sammartano
    Mathematische Zeitschrift, 2015, 280 : 47 - 53