A robust approach for computing solutions of fractional-order two-dimensional Helmholtz equation

被引:1
|
作者
Nadeem, Muhammad [1 ]
Li, Zitian [1 ]
Kumar, Devendra [2 ]
Alsayaad, Yahya [3 ]
机构
[1] Qujing Normal Univ, Sch Math & Stat, Qujing 655011, Peoples R China
[2] Univ Rajasthan, Dept Math, Jaipur 302004, Rajasthan, India
[3] Hodeidah Univ, Dept Phys, Al Hudaydah, Yemen
关键词
Elzaki transform; Fractional derivative; Helmholtz equation; Residual power series method; Analytical results;
D O I
10.1038/s41598-024-54870-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Helmholtz equation plays a crucial role in the study of wave propagation, underwater acoustics, and the behavior of waves in the ocean environment. The Helmholtz equation is also used to describe propagation through ocean waves, such as sound waves or electromagnetic waves. This paper presents the Elzaki transform residual power series method (E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}$$\end{document}T-RPSM) for the analytical treatment of fractional-order Helmholtz equation. To develop this scheme, we combine Elzaki transform (E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}$$\end{document}T) with residual power series method (RPSM). The fractional derivatives are described in Caputo sense. The E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}$$\end{document}T is capable of handling the fractional order and turning the problem into a recurrence form, which is the novelty of our paper. We implement RPSM in such a way that this recurrence relation generates the results in the form of an iterative series. Two numerical applications are considered to demonstrate the efficiency and authenticity of this scheme. The obtained series are determined very quickly and converge to the exact solution only after a few iterations. Graphical plots and absolute error are shown to observe the authenticity of this suggested approach.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [31] On the Fractional-Order Logistic Equation with Two Different Delays
    El-Sayed, Ahmed M. A.
    El-Saka, Hala A. A.
    El-Maghrabi, Esam M.
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (3-4): : 223 - 227
  • [33] ONE THE MASKING PROBLEM FOR THE TWO-DIMENSIONAL HELMHOLTZ EQUATION
    Lobanov, A., V
    Zubrev, R., V
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2013, 10 : 378 - 392
  • [34] A SIMPLE METHOD FOR COMPUTING THE GREEN FUNCTIONS OF THE HELMHOLTZ EQUATION IN THE TWO-DIMENSIONAL IMPEDANCE HALF SPACE
    Chen, Z. -S.
    Waubke, H.
    JOURNAL OF COMPUTATIONAL ACOUSTICS, 2010, 18 (01) : 1 - 11
  • [35] A LOWER BOUND FOR THE TWO-DIMENSIONAL HELMHOLTZ-EQUATION
    HELPS, JD
    DALY, P
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1980, 15 (12) : 1849 - 1856
  • [36] New solutions of fractional-order Burger-Huxley equation
    Inc, Mustafa
    Partohaghighi, Mohammad
    Akinlar, Mehmet Ali
    Agarwal, Paraveen
    Chu, Yu-Ming
    RESULTS IN PHYSICS, 2020, 18
  • [37] On Solutions of Fractional-Order Gas Dynamics Equation by Effective Techniques
    Iqbal, Naveed
    Akgul, Ali
    Shah, Rasool
    Bariq, Abdul
    Al-Sawalha, M. Mossa
    Ali, Akbar
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [38] On the equivalence of classical Helmholtz equation and fractional Helmholtz equation with arbitrary order
    Cheng, Xinyu
    Li, Dong
    Yang, Wen
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (09)
  • [39] Bifurcation and Stability of Two-Dimensional Activator-Inhibitor Model with Fractional-Order Derivative
    Berkal, Messaoud
    Almatrafi, Mohammed Bakheet
    FRACTAL AND FRACTIONAL, 2023, 7 (05)
  • [40] Application of the two-dimensional fractional-order Fourier transformation to particle field digital holography
    Coëtmellec, S
    Lebrun, D
    Özkul, C
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2002, 19 (08) : 1537 - 1546