A robust approach for computing solutions of fractional-order two-dimensional Helmholtz equation

被引:1
|
作者
Nadeem, Muhammad [1 ]
Li, Zitian [1 ]
Kumar, Devendra [2 ]
Alsayaad, Yahya [3 ]
机构
[1] Qujing Normal Univ, Sch Math & Stat, Qujing 655011, Peoples R China
[2] Univ Rajasthan, Dept Math, Jaipur 302004, Rajasthan, India
[3] Hodeidah Univ, Dept Phys, Al Hudaydah, Yemen
关键词
Elzaki transform; Fractional derivative; Helmholtz equation; Residual power series method; Analytical results;
D O I
10.1038/s41598-024-54870-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Helmholtz equation plays a crucial role in the study of wave propagation, underwater acoustics, and the behavior of waves in the ocean environment. The Helmholtz equation is also used to describe propagation through ocean waves, such as sound waves or electromagnetic waves. This paper presents the Elzaki transform residual power series method (E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}$$\end{document}T-RPSM) for the analytical treatment of fractional-order Helmholtz equation. To develop this scheme, we combine Elzaki transform (E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}$$\end{document}T) with residual power series method (RPSM). The fractional derivatives are described in Caputo sense. The E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}$$\end{document}T is capable of handling the fractional order and turning the problem into a recurrence form, which is the novelty of our paper. We implement RPSM in such a way that this recurrence relation generates the results in the form of an iterative series. Two numerical applications are considered to demonstrate the efficiency and authenticity of this scheme. The obtained series are determined very quickly and converge to the exact solution only after a few iterations. Graphical plots and absolute error are shown to observe the authenticity of this suggested approach.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [21] Properties of solutions of the Dirichlet problem for the Helmholtz equation in a two-dimensional domain with cuts
    Krutitskii, P. A.
    DIFFERENTIAL EQUATIONS, 2007, 43 (09) : 1200 - 1212
  • [22] Properties of solutions of the Dirichlet problem for the Helmholtz equation in a two-dimensional domain with cuts
    P. A. Krutitskii
    Differential Equations, 2007, 43 : 1200 - 1212
  • [23] Numerical investigation of two-dimensional fractional Helmholtz equation using Aboodh transform scheme
    Nadeem, Muhammad
    Sharaf, Mohamed
    Mahamad, Saipunidzam
    International Journal of Numerical Methods for Heat and Fluid Flow, 2024, 34 (12): : 4520 - 4534
  • [24] New Explicit Solutions to the Fractional-Order Burgers' Equation
    Uddin, M. Hafiz
    Arefin, Mohammad Asif
    Akbar, M. Ali
    Inc, Mustafa
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [25] A generalized fractional-order Chebyshev wavelet method for two-dimensional distributed-order fractional differential equations
    Do, Quan H.
    Ngo, Hoa T.B.
    Razzaghi, Mohsen
    Communications in Nonlinear Science and Numerical Simulation, 2021, 95
  • [26] Numerical Solution of the Fractional Partial Differential Equations by the Two-Dimensional Fractional-Order Legendre Functions
    Yin, Fukang
    Song, Junqiang
    Wu, Yongwen
    Zhang, Lilun
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [27] Super extreme multistability in a two-dimensional fractional-order forced neural model
    Sriram, Balakrishnan
    Parastesh, Fatemeh
    Natiq, Hayder
    Rajagopal, Karthikeyan
    Jafari, Sajad
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2023, 232 (14-15): : 2559 - 2565
  • [28] Super extreme multistability in a two-dimensional fractional-order forced neural model
    Balakrishnan Sriram
    Fatemeh Parastesh
    Hayder Natiq
    Karthikeyan Rajagopal
    Sajad Jafari
    The European Physical Journal Special Topics, 2023, 232 : 2559 - 2565
  • [29] A generalized fractional-order Chebyshev wavelet method for two-dimensional distributed-order fractional differential equations
    Do, Quan H.
    Ngo, Hoa T. B.
    Razzaghi, Mohsen
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 95
  • [30] Analytical treatment of two-dimensional fractional Helmholtz equations
    Abuasad, Salah
    Moaddy, Khaled
    Hashim, Ishak
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2019, 31 (04) : 659 - 666