COMMENTS ON A 4-DERIVATIVE SCALAR THEORY IN 4 DIMENSIONS

被引:5
|
作者
Tseytlin, A. A. [1 ,2 ,3 ]
机构
[1] Imperial Coll London, Blackett Lab, Theoret Phys Grp, London, England
[2] Lomonosov Moscow State Univ, Inst Theoret & Math Phys, Moscow, Russia
[3] Russian Acad Sci, Lebedev Phys Inst, Moscow, Russia
关键词
scalar theories; higher derivatives;
D O I
10.1134/S0040577923120139
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review and elaborate on some aspects of the classically scale-invariant renormalizable 4-derivative scalar theory L = phi partial derivative(4) + g(partial derivative phi)(4). Similar models appear, e.g., in the context of conformal supergravity or in the description of the crystalline phase of membranes. Considering this theory in Minkowski signature, we suggest how to define Poincar ' e-invariant scattering amplitudes by assuming that only massless oscillating ( nongrowing) modes appear as external states. In such shift-symmetric interacting theory, there are no IR divergences despite the presence of 1/q(4) internal propagators. We discuss how nonunitarity of this theory manifests itself at the level of the one-loop massless scattering amplitude.
引用
收藏
页码:1969 / 1986
页数:18
相关论文
共 50 条
  • [31] SCALE INVARIANT SCALAR YUKAWA COUPLING IN 4-EPSILON-DIMENSIONS
    GEICKE, J
    MEYER, S
    NUCLEAR PHYSICS B, 1973, B 62 (01) : 325 - 332
  • [32] Dilaton in scalar QFT: A no-go theorem in 4 - ε and 3 - ε dimensions
    Nogradi, Daniel
    Ozsvath, Balint
    SCIPOST PHYSICS, 2022, 12 (05):
  • [33] Convergence of derivative expansions in scalar field theory
    Morris, TR
    Tighe, JF
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (11): : 2095 - 2100
  • [34] Kinks in higher derivative scalar field theory
    Zhong, Yuan
    Guo, Rong-Zhen
    Fu, Chun-E
    Liu, Yu-Xiao
    PHYSICS LETTERS B, 2018, 782 : 346 - 352
  • [35] ANOMALOUS DIMENSIONS IN NONPERTURBATIVE SCALAR FIELD THEORY
    BUIDUY, Q
    LETTERE AL NUOVO CIMENTO, 1971, 2 (07): : 321 - &
  • [36] Anomalous dimensions in N=4 SYM theory at order g4
    Bianchi, M
    Kovacs, S
    Rossi, G
    Stanev, YS
    NUCLEAR PHYSICS B, 2000, 584 (1-2) : 216 - 232
  • [37] ON THE FIXED-POINT STRUCTURE OF PHI-4 THEORY IN 4 DIMENSIONS
    LANG, CB
    PHYSICS LETTERS B, 1985, 155 (5-6) : 399 - 403
  • [38] sup x inf Inequalities for the Scalar Curvature Equation in Dimensions 4 and 5
    Bahoura, Samy Skander
    ANALYSIS IN THEORY AND APPLICATIONS, 2022, 38 (01): : 92 - 109
  • [39] Hamiltonian truncation study of the φ4 theory in two dimensions
    Rychkov, Slava
    Vitale, Lorenzo G.
    PHYSICAL REVIEW D, 2015, 91 (08):
  • [40] A SUPERSTRING THEORY IN 4 CURVED SPACE - TIME DIMENSIONS
    BARS, I
    SFETSOS, K
    PHYSICS LETTERS B, 1992, 277 (03) : 269 - 276