Hamiltonian truncation study of the φ4 theory in two dimensions

被引:94
|
作者
Rychkov, Slava [1 ,2 ,3 ]
Vitale, Lorenzo G. [4 ]
机构
[1] CERN, Div Theory, CH-1211 Geneva, Switzerland
[2] Ecole Normale Super, Lab Phys Theor, F-75005 Paris, France
[3] Univ Paris 06, Fac Phys, F-75005 Paris, France
[4] Ecole Polytech Fed Lausanne, Inst Theorie Phenomenes Phys, CH-1015 Lausanne, Switzerland
来源
PHYSICAL REVIEW D | 2015年 / 91卷 / 08期
基金
瑞士国家科学基金会;
关键词
QUANTUM-FIELD THEORIES; PERTURBATION-THEORY; VOLUME DEPENDENCE; ENERGY-SPECTRUM; SPACE APPROACH; LARGE-ORDER; MODELS;
D O I
10.1103/PhysRevD.91.085011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We defend the Fock-space Hamiltonian truncation method, which allows us to calculate numerically the spectrum of strongly coupled quantum field theories, by putting them in a finite volume and imposing a UV cutoff. The accuracy of the method is improved via an analytic renormalization procedure inspired by the usual effective field theory. As an application, we study the two-dimensional.4 theory for a wide range of couplings. The theory exhibits a quantum phase transition between the symmetry-preserving and symmetry-breaking phases. We extract quantitative predictions for the spectrum and the critical coupling and make contact with previous results from the literature. Future directions to further improve the accuracy of the method and enlarge its scope of applications are outlined.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Hamiltonian truncation study of the φ4 theory in two dimensions. II. The Z2-broken phase and the Chang duality
    Rychkov, Slava
    Vitale, Lorenzo G.
    PHYSICAL REVIEW D, 2016, 93 (06)
  • [2] Hamiltonian Truncation with larger dimensions
    Miro, Joan Elias
    Ingoldby, James
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (05)
  • [3] Hamiltonian Truncation with larger dimensions
    Joan Elias Miró
    James Ingoldby
    Journal of High Energy Physics, 2022
  • [4] Hamiltonian truncation effective theory
    Cohen, Timothy
    Farnsworth, Kara
    Houtz, Rachel
    Luty, Markus A.
    SCIPOST PHYSICS, 2022, 13 (02):
  • [5] Bootstrapping 2d φ4 theory with Hamiltonian truncation data
    Chen, Hongbin
    Fitzpatrick, A. Liam
    Karateev, Denis
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (02)
  • [6] Bootstrapping 2d ϕ4 theory with Hamiltonian truncation data
    Hongbin Chen
    A. Liam Fitzpatrick
    Denis Karateev
    Journal of High Energy Physics, 2022
  • [7] Hamiltonian truncation approach to quenches in the Ising field theory
    Rakovszky, T.
    Mestyan, M.
    Collura, M.
    Kormos, M.
    Takacs, G.
    NUCLEAR PHYSICS B, 2016, 911 : 805 - 845
  • [8] Diagonalizing the Hamiltonian of λφ4 theory in 2 space-time dimensions
    Christensen, Neil
    COMPUTER PHYSICS COMMUNICATIONS, 2018, 222 : 167 - 188
  • [9] Nonperturbative dynamics of (2+1)d φ4-theory from Hamiltonian truncation
    Anand, Nikhil
    Katz, Emanuel
    Khandker, Zuhair U.
    Walters, Matthew T.
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (05)
  • [10] Nonperturbative dynamics of (2+1)d ϕ4-theory from Hamiltonian truncation
    Nikhil Anand
    Emanuel Katz
    Zuhair U. Khandker
    Matthew T. Walters
    Journal of High Energy Physics, 2021