Hamiltonian truncation study of the φ4 theory in two dimensions. II. The Z2-broken phase and the Chang duality

被引:56
|
作者
Rychkov, Slava [1 ,2 ,3 ]
Vitale, Lorenzo G. [4 ]
机构
[1] CERN, Dept Theoret Phys, CH-1211 Geneva, Switzerland
[2] Ecole Normale Super, LPTENS, Lab Phys Theor, F-75005 Paris, France
[3] Univ Paris 06, Sorbonne Univ, Fac Phys, F-75005 Paris, France
[4] Ecole Polytech Fed Lausanne, Inst Theorie Phenomenes Phys, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
QUANTUM-FIELD THEORIES; RENORMALIZATION; SPECTRUM;
D O I
10.1103/PhysRevD.93.065014
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Fock-space Hamiltonian truncation method is developed further, paying particular attention to the treatment of the scalar field zero mode. This is applied to the two-dimensional phi(4) theory in the phase where the Z(2)-symmetry is spontaneously broken, complementing our earlier study of the Z(2)-invariant phase and of the critical point. We also check numerically the weak/strong duality of this theory discussed long ago by Chang.
引用
收藏
页数:16
相关论文
共 6 条
  • [1] Hamiltonian truncation study of the φ4 theory in two dimensions
    Rychkov, Slava
    Vitale, Lorenzo G.
    PHYSICAL REVIEW D, 2015, 91 (08):
  • [2] Quantum phase transitions of metals in two spatial dimensions. II. Spin density wave order
    Metlitski, Max A.
    Sachdev, Subir
    PHYSICAL REVIEW B, 2010, 82 (07)
  • [3] φ4 theory Part II. the broken phase beyond NNNN(NNNN)LO
    Serone, Marco
    Spada, Gabriele
    Villadoro, Giovanni
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (05)
  • [4] λϕ4 theory — Part II. the broken phase beyond NNNN(NNNN)LO
    Marco Serone
    Gabriele Spada
    Giovanni Villadoro
    Journal of High Energy Physics, 2019
  • [5] DUAL OPERATORS AND PHASE-STRUCTURE OF THE Z(4)-SYMMETRIC SCALAR FIELD-THEORY IN 2+1 DIMENSIONS
    DECARVALHO, CAA
    MARINO, EC
    MARQUES, GC
    DECASTRO, MG
    PHYSICAL REVIEW D, 1988, 38 (02): : 533 - 552
  • [6] Study of gas-phase reactions within the modified Marcus model. II. CH3OH + CH3 → CH2OH + CH4
    Romanskii, I. A.
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2018, 1138 : 66 - 74