Fusion-Based Low-Light Image Enhancement

被引:1
|
作者
Wang, Haodian [1 ]
Wang, Yang [1 ]
Cao, Yang [1 ]
Zha, Zheng-Jun [1 ]
机构
[1] Univ Sci & Technol China, Hefei 230027, Peoples R China
来源
MULTIMEDIA MODELING, MMM 2023, PT I | 2023年 / 13833卷
基金
中国国家自然科学基金;
关键词
Unsupervised; Low-light enhancement; Noise suppression; Saturation correction;
D O I
10.1007/978-3-031-27077-2_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, deep learning-based methods have made remarkable progress in low-light image enhancement. In addition to poor contrast, the images captured under insufficient light suffer from severe noise and saturation distortion. Most existing unsupervised learning-based methods adopt the two-stage processing method to enhance contrast and denoise sequentially. However, the noise will be amplified in the contrast enhancement process, thus increasing the difficulty of denoising. Besides, the saturation distortion caused by insufficient illumination is not considered well in existing unsupervised low-light enhancement methods. To address the above problems, we propose a novel parallel framework, which includes a saturation adaptive adjustment branch, brightness adjustment branch, noise suppression branch, and fusion module for adjusting saturation, correcting brightness, denoise, and multi-branch fusion, respectively. Specifically, the saturation is corrected via global adjustment, the contrast is enhanced through curve mapping estimation, and we use BM3D to preliminary denoise. Further, the enhanced branches are fed to the fusion module for a trainable guided filter, which is optimized in an unsupervised training manner. Experiments on the LOL, MIT-Adobe 5k, and SICE datasets demonstrate that our method achieves better quantitation and qualification results than the state-ofthe-art algorithms.
引用
收藏
页码:121 / 133
页数:13
相关论文
共 50 条
  • [31] Bilateral fusion low-light image enhancement with implicit information constraints
    Zhu, Jiahui
    Sang, Shengbo
    Jian, Aoqun
    Yang, Le
    Sang, Luxiao
    Ge, Yang
    Kang, Rihui
    Yang, LiuWei
    Tao, Lei
    Hao, RunFang
    IET IMAGE PROCESSING, 2024, 18 (13) : 4141 - 4150
  • [32] Low-light image enhancement network with decomposition and adaptive information fusion
    Hegui Zhu
    Kai Wang
    Ziwei Zhang
    Yuelin Liu
    Wuming Jiang
    Neural Computing and Applications, 2022, 34 : 7733 - 7748
  • [33] Low-light image enhancement network with decomposition and adaptive information fusion
    Zhu, Hegui
    Wang, Kai
    Zhang, Ziwei
    Liu, Yuelin
    Jiang, Wuming
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (10): : 7733 - 7748
  • [34] Low-light image enhancement via multistage feature fusion network
    Tan, Mingming
    Fan, Jiayi
    Fan, Guodong
    Gan, Min
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (06)
  • [35] Low-light image enhancement network with decomposition and adaptive information fusion
    Zhu, Hegui
    Wang, Kai
    Zhang, Ziwei
    Liu, Yuelin
    Jiang, Wuming
    Neural Computing and Applications, 2022, 34 (10) : 7733 - 7748
  • [36] Low-light image enhancement based on normal-light image degradation
    Zhao, Bai
    Gong, Xiaolin
    Wang, Jian
    Zhao, Lingchao
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (05) : 1409 - 1416
  • [37] Unsupervised Boosted Fusion Network for Single Low-Light Image Enhancement
    Zhang, Jianfeng
    Li, Hengxuan
    Huo, Zhanqiang
    IEEE ACCESS, 2024, 12 : 179252 - 179264
  • [38] Spatio-Spectral Feature Fusion for Low-Light Image Enhancement
    Qiu, Yansheng
    Chen, Jun
    Wang, Zheng
    Wang, Xiao
    Lin, Chia-Wen
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 2157 - 2161
  • [39] Low-light image enhancement via multistage Laplacian feature fusion
    Liu, Zhenbing
    Huang, Yingxin
    Zhang, Ruojie
    Lu, Haoxiang
    Wang, Wenhao
    Zhang, Zhaoyuan
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (02)
  • [40] Low-light image enhancement based on normal-light image degradation
    Bai Zhao
    Xiaolin Gong
    Jian Wang
    Lingchao Zhao
    Signal, Image and Video Processing, 2022, 16 : 1409 - 1416