Fusion-Based Low-Light Image Enhancement

被引:1
|
作者
Wang, Haodian [1 ]
Wang, Yang [1 ]
Cao, Yang [1 ]
Zha, Zheng-Jun [1 ]
机构
[1] Univ Sci & Technol China, Hefei 230027, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Unsupervised; Low-light enhancement; Noise suppression; Saturation correction;
D O I
10.1007/978-3-031-27077-2_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, deep learning-based methods have made remarkable progress in low-light image enhancement. In addition to poor contrast, the images captured under insufficient light suffer from severe noise and saturation distortion. Most existing unsupervised learning-based methods adopt the two-stage processing method to enhance contrast and denoise sequentially. However, the noise will be amplified in the contrast enhancement process, thus increasing the difficulty of denoising. Besides, the saturation distortion caused by insufficient illumination is not considered well in existing unsupervised low-light enhancement methods. To address the above problems, we propose a novel parallel framework, which includes a saturation adaptive adjustment branch, brightness adjustment branch, noise suppression branch, and fusion module for adjusting saturation, correcting brightness, denoise, and multi-branch fusion, respectively. Specifically, the saturation is corrected via global adjustment, the contrast is enhanced through curve mapping estimation, and we use BM3D to preliminary denoise. Further, the enhanced branches are fed to the fusion module for a trainable guided filter, which is optimized in an unsupervised training manner. Experiments on the LOL, MIT-Adobe 5k, and SICE datasets demonstrate that our method achieves better quantitation and qualification results than the state-ofthe-art algorithms.
引用
收藏
页码:121 / 133
页数:13
相关论文
共 50 条
  • [21] Low-light color image enhancement based on NSST
    Wu Xiaochu
    Tang Guijin
    Liu Xiaohua
    Cui Ziguan
    Luo Suhuai
    The Journal of China Universities of Posts and Telecommunications, 2019, (05) : 41 - 48
  • [22] Low-light color image enhancement based on NSST
    Xiaochu W.
    Guijin T.
    Xiaohua L.
    Ziguan C.
    Suhuai L.
    Journal of China Universities of Posts and Telecommunications, 2019, 26 (05): : 41 - 48
  • [23] Low-Light Image Enhancement Based on Transmission Normalization
    Yang A.
    Song C.
    Zhang L.
    Bai H.
    Bu L.
    Yang, Aiping (yangaiping@tju.edu.cn), 2017, Tianjin University (50): : 997 - 1003
  • [24] Gradient-Based Low-Light Image Enhancement
    Tanaka, Masayuki
    Shibata, Takashi
    Okutomi, Masatoshi
    2019 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2019,
  • [25] Low-light image enhancement based on virtual exposure
    Wang, Wencheng
    Yan, Dongliang
    Wu, Xiaojin
    He, Weikai
    Chen, Zhenxue
    Yuan, Xiaohui
    Li, Lun
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 118
  • [26] Image fusion-based contrast enhancement
    Saleem, Amina
    Beghdadi, Azeddine
    Boashash, Boualem
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2012, : 1 - 17
  • [27] Fractional-Order Fusion Model for Low-Light Image Enhancement
    Dai, Qiang
    Pu, Yi-Fei
    Rahman, Ziaur
    Aamir, Muhammad
    SYMMETRY-BASEL, 2019, 11 (04):
  • [28] An Effective Low-Light Image Enhancement Algorithm via Fusion Model
    Wang, Ya-Min
    Sun, Zhan-Li
    Han, Fu-Qiang
    INTELLIGENT COMPUTING METHODOLOGIES, ICIC 2018, PT III, 2018, 10956 : 388 - 396
  • [29] Image fusion-based contrast enhancement
    Amina Saleem
    Azeddine Beghdadi
    Boualem Boashash
    EURASIP Journal on Image and Video Processing, 2012
  • [30] Deep Multi-Illumination Fusion for Low-Light Image Enhancement
    Zhong, Wei
    Lin, Jie
    Ma, Long
    Liu, Risheng
    Fan, Xin
    PATTERN RECOGNITION AND COMPUTER VISION,, PT III, 2021, 13021 : 140 - 150