Finite group with Hall normally embedded minimal subgroups

被引:3
|
作者
Cui, Liang [1 ]
Zheng, Weicheng [1 ]
Meng, Wei [1 ,2 ,4 ]
Lu, Jiakuan [3 ]
机构
[1] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin, Guangxi, Peoples R China
[2] SUSTech Int Ctr Math, Shenzhen, Guangdong, Peoples R China
[3] Guangxi Normal Univ, Sch Math & Stat, Guilin, Guangxi, Peoples R China
[4] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541002, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
2-nilpotent group; Hall normally embedded; second maximal subgroup;
D O I
10.1080/00927872.2023.2204964
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group. A subgroup H of G is called Hall normally embedded in G if H is a Hall subgroup of H G , where H G is the normal closure of H in G, that is, the smallest normal subgroup of G containing H. A group G is called an HNE2-group if all cyclic subgroups of order 2 and 4 of G are Hall normally embedded in G. In this paper, we prove that all HNE2-groups are 2-nilpotent. Furthermore, we also characterize the structure of finite group all of whose maximal subgroups are HNE2-groups. Finally, we determine finite non-solvable groups all of whose second maximal subgroups are HNE2-groups.
引用
下载
收藏
页码:4280 / 4284
页数:5
相关论文
共 50 条
  • [31] PARTIALLY S-EMBEDDED MINIMAL SUBGROUPS OF FINITE GROUPS
    Zhao, T.
    Zhang, Q.
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2013, 2 (04) : 7 - 16
  • [32] ON THE NUMBER OF HALL PI-SUBGROUPS IN A FINITE-GROUP
    LOPEZ, AV
    ARCHIV DER MATHEMATIK, 1986, 46 (02) : 102 - 107
  • [33] WEAKLY s-SUPPLEMENTALLY EMBEDDED MINIMAL SUBGROUPS OF FINITE GROUPS
    Zhao, Tao
    Li, Xianhua
    Xu, Yong
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2011, 54 : 799 - 807
  • [34] A NOTE ON MINIMAL AND MAXIMAL-SUBGROUPS IN A FINITE-GROUP
    KHAZAL, RR
    JOURNAL OF THE UNIVERSITY OF KUWAIT-SCIENCE, 1989, 16 (02): : 229 - 236
  • [35] MINIMAL NONABELIAN AND MAXIMAL SUBGROUPS OF A FINITE p-GROUP
    Berkovich, Yakov
    GLASNIK MATEMATICKI, 2008, 43 (01) : 97 - 109
  • [36] ℱƬ-Embedded and ℱƬΦ-Embedded Subgroups of Finite Groups
    X. Chen
    W. Guo
    A. N. Skiba
    Algebra and Logic, 2015, 54 : 226 - 244
  • [37] Generation of a finite group with Hall maximal subgroups by a pair of conjugate elements
    Maslova, N. V.
    Revin, D. O.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 285 : S139 - S145
  • [38] Nonabelian Composition Factors of a Finite Group Whose Maximal Subgroups of Odd Indices Are Hall Subgroups
    N. V. Maslova
    D. O. Revin
    Proceedings of the Steklov Institute of Mathematics, 2017, 299 : 148 - 157
  • [39] Generation of a finite group with Hall maximal subgroups by a pair of conjugate elements
    N. V. Maslova
    D. O. Revin
    Proceedings of the Steklov Institute of Mathematics, 2014, 285 : 139 - 145
  • [40] Generation of a finite group with Hall maximal subgroups by a pair of conjugate elements
    Maslova, N. V.
    Revin, D. O.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (03): : 199 - 206