Finite group with Hall normally embedded minimal subgroups

被引:3
|
作者
Cui, Liang [1 ]
Zheng, Weicheng [1 ]
Meng, Wei [1 ,2 ,4 ]
Lu, Jiakuan [3 ]
机构
[1] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin, Guangxi, Peoples R China
[2] SUSTech Int Ctr Math, Shenzhen, Guangdong, Peoples R China
[3] Guangxi Normal Univ, Sch Math & Stat, Guilin, Guangxi, Peoples R China
[4] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541002, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
2-nilpotent group; Hall normally embedded; second maximal subgroup;
D O I
10.1080/00927872.2023.2204964
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group. A subgroup H of G is called Hall normally embedded in G if H is a Hall subgroup of H G , where H G is the normal closure of H in G, that is, the smallest normal subgroup of G containing H. A group G is called an HNE2-group if all cyclic subgroups of order 2 and 4 of G are Hall normally embedded in G. In this paper, we prove that all HNE2-groups are 2-nilpotent. Furthermore, we also characterize the structure of finite group all of whose maximal subgroups are HNE2-groups. Finally, we determine finite non-solvable groups all of whose second maximal subgroups are HNE2-groups.
引用
下载
收藏
页码:4280 / 4284
页数:5
相关论文
共 50 条
  • [11] Supersolubility of a Finite Group with Normally Embedded Maximal Subgroups in Sylow Subgroups
    Monakhov, V. S.
    Trofimuk, A. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (05) : 922 - 930
  • [12] Finite supersolvable groups and Hall normally embedded subgroups of prime power order
    Zheng, Weicheng
    Meng, Wei
    RICERCHE DI MATEMATICA, 2024,
  • [13] Finite groups with normally embedded subgroups
    Shen, Zhencai
    Li, Shirong
    Shi, Wujie
    JOURNAL OF GROUP THEORY, 2010, 13 (02) : 257 - 265
  • [14] On p-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups
    Trofimuk, A.
    ALGEBRA AND DISCRETE MATHEMATICS, 2020, 29 (01): : 139 - 146
  • [15] On Hall subgroups of a finite group
    Guo, Wenbin
    Skiba, Alexander N.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (07): : 1177 - 1187
  • [16] On Hall embedded subgroups of finite groups
    Monakhov, Victor
    Kniahina, Viktoryia
    JOURNAL OF GROUP THEORY, 2015, 18 (04) : 565 - 568
  • [17] On hall subnormally embedded subgroups of finite groups
    Adolfo Ballester-Bolinches
    John Cossey
    ShouHong Qiao
    Monatshefte für Mathematik, 2016, 181 : 753 - 760
  • [18] On hall subnormally embedded subgroups of finite groups
    Ballester-Bolinches, Adolfo
    Cossey, John
    Qiao, ShouHong
    MONATSHEFTE FUR MATHEMATIK, 2016, 181 (04): : 753 - 760
  • [19] ON P-NORMALLY EMBEDDED SUBGROUPS OF FINITE-GROUPS
    KOCHNO, AP
    DOKLADY AKADEMII NAUK BELARUSI, 1980, 24 (12): : 1061 - 1062
  • [20] P-NORMALLY EMBEDDED SUBGROUPS OF FINITE SOLUBLE GROUPS
    CHAMBERS, GA
    JOURNAL OF ALGEBRA, 1970, 16 (03) : 442 - &