A versatile semi-active magnetorheological inerter with energy harvesting and active control capabilities

被引:6
|
作者
Cao, Jing [1 ]
Ning, Donghong [1 ]
Liu, Pengfei [1 ]
Sun, Shuaishuai [2 ]
Liu, Guijie [1 ]
Du, Haiping [3 ]
机构
[1] Ocean Univ China, Qingdao, Peoples R China
[2] Univ Sci & Technol China, Hefei, Peoples R China
[3] Univ Wollongong, Wollongong, NSW 2522, Australia
基金
中国国家自然科学基金;
关键词
semi-active control; inerter; variable damping; energy harvesting; TRAIN SUSPENSION SYSTEMS; MECHANICAL NETWORKS; DESIGN;
D O I
10.1088/1361-665X/ad153c
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Semi-active devices typically adjust the system's damping coefficient to control vibration, offering advantages such as excellent performance and low power consumption. However, the output force of the traditional variable damping (VD) device can only be opposite to the relative motion direction of the device's two terminals, which limits the vibration control performance. This paper introduces a versatile semi-active magnetorheological (MR) inerter with three operating modes, the VD, energy harvesting, and active control modes, to break through the performance bottleneck of traditional semi-active devices. The MR inerter combines two MR dampers and a flywheel, acting as the controllable units and energy sink. The built prototype is tested, and its parameters are identified. When the innovative semi-active inerter works with a corresponding control strategy to regulate the current in two MR dampers, it can achieve vibration energy storage and release. The harvested energy can help to reduce the high dependency of the semi-active output force on external inputs. The proposed semi-active inerter has excellent potential in the future applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Vehicle suspension with magnetorheological damper under semi-active control
    Jia, Qi-Fen
    Xu, Heng-Bo
    Wang, Ying
    Liu, Xi-Jun
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2006, 39 (07): : 768 - 772
  • [22] Verification platform for magnetorheological semi-active suspension control algorithm
    Pang Q.
    Zhang L.
    He Y.
    Gong Z.
    Feng Z.
    Chen Y.
    Wei Y.
    Du Y.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2019, 59 (07): : 567 - 574
  • [23] Fuzzy semi-active control of railway vehicle with magnetorheological dampers
    Li, Zhong-Ji
    Dai, Huan-Yun
    Zeng, Jing
    Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering, 2014, 14 (05): : 43 - 50
  • [24] Magnetorheological damping and semi-active control of an autoparametric vibration absorber
    Krzysztof Kecik
    Andrzej Mitura
    Danuta Sado
    Jerzy Warminski
    Meccanica, 2014, 49 : 1887 - 1900
  • [25] Semi-active control of a wind turbine via magnetorheological dampers
    Caterino, Nicola
    JOURNAL OF SOUND AND VIBRATION, 2015, 345 : 1 - 17
  • [26] Semi-active control of magnetorheological damper system: A Lyapunov design
    Yim, W
    Singh, SN
    Minnicino, MA
    SMART STRUCTURES AND MATERIALS 2004: MODELING, SIGNAL PROCESSING, AND CONTROL, 2004, 5383 : 289 - 297
  • [27] Semi-active control of civil structures using magnetorheological dampers
    Alvarez, L
    Jiménez, R
    PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 1428 - 1433
  • [28] Experimental comparison of control algorithms for semi-active control with magnetorheological dampers
    Li, Xinhua
    ADVANCES IN CIVIL ENGINEERING AND ARCHITECTURE INNOVATION, PTS 1-6, 2012, 368-373 : 1152 - 1155
  • [29] An approach to optimal semi-active control of vibration energy harvesting based on MEMS
    Rojas, Rafael A.
    Carcaterra, Antonio
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 107 : 291 - 316
  • [30] Modelling of magnetorheological semi-active suspension system controlled by semi-active damping force estimator
    Abu Bakar, Saiful Anuar
    Jamaluddin, Hishamuddin
    Abd Rahman, Roslan
    Samin, Pakharuddin Mohd
    Masuda, Ryosuke
    Hashimoto, Hiromu
    Inaba, Takeshi
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2011, 42 (01) : 49 - 64