Gaudin Hamiltonians on unitarizable modules over classical Lie (super)algebras

被引:1
|
作者
Cheong, Wan Keng [1 ]
Lam, Ngau [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Math, Tainan 701401, Taiwan
关键词
Gaudin Hamiltonians; Lie superalgebras; Unitarizable modules; Super duality; BETHE-ANSATZ; SUPERALGEBRAS; MODEL;
D O I
10.1016/j.jalgebra.2023.12.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a tensor product of unitarizable irreducible highest weight modules over the Lie (super)algebra 9, where 9 is gl(m|n), osp(2m|2n) or spo(2m|2n). We show, using super duality, that the singular eigenvectors of the (super) Gaudin Hamiltonians for 9 on M can be obtained from the singular eigenvectors of the Gaudin Hamiltonians for the corresponding Lie algebras on some tensor products of finite-dimensional irreducible modules. As a consequence, the (super) Gaudin Hamiltonians for 9 are diagonalizable on the space spanned by singular vectors of M and hence on M. In particular, we establish the diagonalization of the Gaudin Hamiltonians, associated to any of the orthogonal Lie algebra so(2n) and the symplectic Lie algebra sp(2n), on the tensor product of infinite-dimensional unitarizable irreducible highest weight modules. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:400 / 431
页数:32
相关论文
共 50 条