Gaudin Hamiltonians on unitarizable modules over classical Lie (super)algebras

被引:1
|
作者
Cheong, Wan Keng [1 ]
Lam, Ngau [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Math, Tainan 701401, Taiwan
关键词
Gaudin Hamiltonians; Lie superalgebras; Unitarizable modules; Super duality; BETHE-ANSATZ; SUPERALGEBRAS; MODEL;
D O I
10.1016/j.jalgebra.2023.12.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a tensor product of unitarizable irreducible highest weight modules over the Lie (super)algebra 9, where 9 is gl(m|n), osp(2m|2n) or spo(2m|2n). We show, using super duality, that the singular eigenvectors of the (super) Gaudin Hamiltonians for 9 on M can be obtained from the singular eigenvectors of the Gaudin Hamiltonians for the corresponding Lie algebras on some tensor products of finite-dimensional irreducible modules. As a consequence, the (super) Gaudin Hamiltonians for 9 are diagonalizable on the space spanned by singular vectors of M and hence on M. In particular, we establish the diagonalization of the Gaudin Hamiltonians, associated to any of the orthogonal Lie algebra so(2n) and the symplectic Lie algebra sp(2n), on the tensor product of infinite-dimensional unitarizable irreducible highest weight modules. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:400 / 431
页数:32
相关论文
共 50 条
  • [31] Weight Modules Over a Class of Graded Lie Algebras
    Xuewen Liu
    Xiangqian Guo
    Algebras and Representation Theory, 2014, 17 : 1235 - 1248
  • [32] A Class of Polynomial Modules over Map Lie Algebras
    Chen, Hongjia
    Dai, Han
    Liu, Xingpeng
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2024,
  • [33] Gradings on Modules Over Lie Algebras of E Types
    Draper, Cristina
    Elduque, Alberto
    Kochetov, Mikhail
    ALGEBRAS AND REPRESENTATION THEORY, 2017, 20 (05) : 1085 - 1107
  • [34] Lie Algebras Associated with Modules over Polynomial Rings
    A. P. Petravchuk
    K. Ya. Sysak
    Ukrainian Mathematical Journal, 2018, 69 : 1433 - 1444
  • [35] Modules in the categories Eλ over the Lie algebras An(1)
    Spirin, SA
    RUSSIAN MATHEMATICAL SURVEYS, 1999, 54 (03) : 654 - 655
  • [36] Polynomial Modules over a Class of GIM Lie Algebras
    Xia, Limeng
    Yang, Hengyun
    JOURNAL OF LIE THEORY, 2024, 34 (02) : 481 - 501
  • [37] Weight Modules Over a Class of Graded Lie Algebras
    Liu, Xuewen
    Guo, Xiangqian
    ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (04) : 1235 - 1248
  • [38] Gradings on Modules Over Lie Algebras of E Types
    Cristina Draper
    Alberto Elduque
    Mikhail Kochetov
    Algebras and Representation Theory, 2017, 20 : 1085 - 1107
  • [39] SAYD Modules over Lie-Hopf Algebras
    Rangipour, Bahram
    Suetlue, Serkan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 316 (01) : 199 - 236
  • [40] Verma Modules over Quantum Torus Lie Algebras
    Lue, Rencai
    Zhao, Kaiming
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2010, 62 (02): : 382 - 399