Topology optimization of fluid-structure interaction problems with total stress equilibrium

被引:1
|
作者
Abdelhamid, Mohamed [1 ]
Czekanski, Aleksander [1 ,2 ]
机构
[1] York Univ, Dept Mech Engn, Toronto, ON, Canada
[2] York Univ, Dept Mechan Engn, 4700 Keele St, Toronto, ON M3J 1P3, Canada
关键词
density-based methods; fluid-structure interactions; topology optimization; traction equilibrium; viscous stresses; SUPERCONVERGENT PATCH RECOVERY; BOUNDARY; DESIGN;
D O I
10.1002/nme.7368
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work extends force coupling in the topology optimization of fluid-structure interaction problems from hydrostatic to total stresses through the inclusion of viscous stress components. The superconvergent patch recovery technique is implemented to remove the discontinuities in velocity derivatives over the finite elements boundaries. The sensitivity analysis is derived analytically for the superconvergent patch recovery approach and further verified through the use of the complex-step derivative approximation method. Numerical examples demonstrate a differentiation in the optimized designs using pressure versus total stress coupling depending on the flow characteristics of the design problem.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] SOME TYPE PROBLEMS OF FLUID-STRUCTURE INTERACTION
    SCANLAN, RH
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1976, 59 : S19 - S19
  • [32] A robust preconditioner for fluid-structure interaction problems
    Washio, T
    Hisada, T
    Watanabe, H
    Tezduyar, TE
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (39-41) : 4027 - 4047
  • [33] Topology optimization of stationary fluid-structure interaction problems considering a natural frequency constraint for vortex-induced vibrations attenuation
    Siqueira, L. O.
    Silva, K. E. S.
    Silva, E. C. N.
    Picelli, R.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2024, 234
  • [34] Topology optimization of binary structures under design-dependent fluid-structure interaction loads
    R. Picelli
    S. Ranjbarzadeh
    R. Sivapuram
    R. S. Gioria
    E. C. N. Silva
    Structural and Multidisciplinary Optimization, 2020, 62 : 2101 - 2116
  • [35] Topology optimization of binary structures under design-dependent fluid-structure interaction loads
    Picelli, R.
    Ranjbarzadeh, S.
    Sivapuram, R.
    Gioria, R. S.
    Silva, E. C. N.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 62 (04) : 2101 - 2116
  • [36] ANALYSIS AND OPTIMIZATION OF ROBIN-ROBIN PARTITIONED PROCEDURES IN FLUID-STRUCTURE INTERACTION PROBLEMS
    Gerardo-Giorda, Luca
    Nobile, Fabio
    Vergara, Christian
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (06) : 2091 - 2116
  • [37] Analysis and optimization of the generalized Schwarz method for elliptic problems with application to fluid-structure interaction
    Gigante, Giacomo
    Vergara, Christian
    NUMERISCHE MATHEMATIK, 2015, 131 (02) : 369 - 404
  • [38] Shape design optimization of stationary fluid-structure interaction problems with large displacements and turbulence
    Lund, E
    Moller, H
    Jakobsen, LA
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2003, 25 (5-6) : 383 - 392
  • [39] Space-mapping in fluid-structure interaction problems
    Scholcz, T. P.
    van Zuijlen, A. H.
    Bijl, H.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 281 : 162 - 183
  • [40] On the meshfree particle methods for fluid-structure interaction problems
    Mazhar, Farrukh
    Javed, Ali
    Xing, Jing Tang
    Shahzad, Aamer
    Mansoor, Mohtashim
    Maqsood, Adnan
    Shah, Syed Irtiza Ali
    Asim, Kamran
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2021, 124 : 14 - 40