Topology optimization of fluid-structure interaction problems with total stress equilibrium

被引:1
|
作者
Abdelhamid, Mohamed [1 ]
Czekanski, Aleksander [1 ,2 ]
机构
[1] York Univ, Dept Mech Engn, Toronto, ON, Canada
[2] York Univ, Dept Mechan Engn, 4700 Keele St, Toronto, ON M3J 1P3, Canada
关键词
density-based methods; fluid-structure interactions; topology optimization; traction equilibrium; viscous stresses; SUPERCONVERGENT PATCH RECOVERY; BOUNDARY; DESIGN;
D O I
10.1002/nme.7368
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work extends force coupling in the topology optimization of fluid-structure interaction problems from hydrostatic to total stresses through the inclusion of viscous stress components. The superconvergent patch recovery technique is implemented to remove the discontinuities in velocity derivatives over the finite elements boundaries. The sensitivity analysis is derived analytically for the superconvergent patch recovery approach and further verified through the use of the complex-step derivative approximation method. Numerical examples demonstrate a differentiation in the optimized designs using pressure versus total stress coupling depending on the flow characteristics of the design problem.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] A monolithic strategy for fluid-structure interaction problems
    Jog, C. S.
    Pal, R. K.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 85 (04) : 429 - 460
  • [22] On Numerical Approximation of Fluid-Structure Interaction Problems
    Svacek, P.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 571 - 578
  • [23] DECOUPLING PROCEDURES FOR FLUID-STRUCTURE INTERACTION PROBLEMS
    ANTONIADIS, I
    KANARACHOS, A
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 70 (01) : 1 - 25
  • [24] Model Studies of Fluid-Structure Interaction Problems
    Wang, X. Sheldon
    Yang, Ye
    Wu, Tao
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2019, 119 (01): : 5 - 34
  • [25] MATHEMATICAL FORMULATION OF FLUID-STRUCTURE INTERACTION PROBLEMS
    BOUJOT, J
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1987, 21 (02): : 239 - 260
  • [26] An Eulerian approach for fluid-structure interaction problems
    Morinishi, Koji
    Fukui, Tomohiro
    COMPUTERS & FLUIDS, 2012, 65 : 92 - 98
  • [27] A parametric study on fluid-structure interaction problems
    Maity, D
    Bhattacharyya, SK
    JOURNAL OF SOUND AND VIBRATION, 2003, 263 (04) : 917 - 935
  • [28] Preface: Simulation of Fluid-Structure Interaction Problems
    Li, Zhilin
    Wang, X. Sheldon
    Zhang, Lucy T.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2019, 119 (01): : 1 - 3
  • [29] ALE formulation for fluid-structure interaction problems
    Souli, M
    Ouahsine, A
    Lewin, L
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 190 (5-7) : 659 - 675
  • [30] Reduced models for fluid-structure interaction problems
    Ohayon, R
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 60 (01) : 139 - 152