Hahn multiple orthogonal polynomials of type I: Hypergeometric expressions

被引:4
|
作者
Branquinho, Amilcar [1 ]
Diaz, Juan E. F. [2 ]
Foulquie-Moreno, Ana [2 ]
Manas, Manuel [3 ,4 ]
机构
[1] Univ Coimbra, Dept Matemat, CMUC, P-3001454 Coimbra, Portugal
[2] Univ Aveiro, Dept Matemat, CIDMA, P-3810193 Aveiro, Portugal
[3] Univ Complutense Madrid, Dept Fis Teor, Plaza Ciencias 1, Madrid 28040, Spain
[4] Inst Ciencias Matemat ICMAT, Campus Cantoblanco UAM, Madrid 28049, Spain
关键词
Multiple orthogonal polynomials; Askey scheme; Generalized hypergeometric; functions; Kamp e de Feriet hypergeometric; MIXED-TYPE;
D O I
10.1016/j.jmaa.2023.127471
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Explicit expressions for the Hahn multiple polynomials of type I, in terms of Kamp e de Feriet hypergeometric series, are given. Orthogonal and biorthogonal relations are proven. Then, part of the Askey scheme for multiple orthogonal polynomials type I is completed. In particular, explicit expressions in terms of generalized hypergeometric series and Kamp e de Feriet hypergeometric series, are given for the multiple orthogonal polynomials of type I for the Jacobi-Pineiro, Meixner I, Meixner II, Kravchuk, Laguerre I, Laguerre II and Charlier families.& COPY; 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Multiple orthogonal polynomials associated with branched continued fractions for ratios of hypergeometric series
    Lima, Helder
    ADVANCES IN APPLIED MATHEMATICS, 2023, 147
  • [32] Systems of orthogonal polynomials defined by hypergeometric type equations with application to quantum mechanics
    Cotfas, N
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2004, 2 (03): : 456 - 466
  • [33] Analytic properties of some basic hypergeometric-Sobolev-type orthogonal polynomials
    Costas-Santos, Roberto S.
    Soria-Lorente, Anier
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2018, 24 (11) : 1715 - 1733
  • [34] Continuous-1 hypergeometric orthogonal polynomials
    Pelletier, Jonathan
    Vinet, Luc
    Zhedanov, Alexei
    STUDIES IN APPLIED MATHEMATICS, 2024, 153 (03)
  • [35] BASIC HYPERGEOMETRIC FUNCTIONS AND ORTHOGONAL LAURENT POLYNOMIALS
    Costa, Marisa S.
    Godoy, Eduardo
    Lamblem, Regina L.
    Sri Ranga, A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (06) : 2075 - 2089
  • [36] Hypergeometric Orthogonal Polynomials with respect to Newtonian Bases
    Vinet, Luc
    Zhedanov, Alexei
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016, 12
  • [37] Moments of Random Matrices and Hypergeometric Orthogonal Polynomials
    Fabio Deelan Cunden
    Francesco Mezzadri
    Neil O’Connell
    Nick Simm
    Communications in Mathematical Physics, 2019, 369 : 1091 - 1145
  • [38] Moments of Random Matrices and Hypergeometric Orthogonal Polynomials
    Cunden, Fabio Deelan
    Mezzadri, Francesco
    O'Connell, Neil
    Simm, Nick
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 369 (03) : 1091 - 1145
  • [39] Fourier Transform of the Orthogonal Polynomials on the Unit Ball and Continuous Hahn Polynomials
    Lekesiz, Esra Guldogan
    Aktas, Rabia
    Area, Ivan
    AXIOMS, 2022, 11 (10)
  • [40] ORTHOGONAL POLYNOMIALS IN 2 VARIABLES OF Q-HAHN AND Q-JACOBI TYPE
    DUNKL, CF
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1980, 1 (02): : 137 - 151