High-dimensional scalar function visualization using principal parameterizations

被引:1
|
作者
Ballester-Ripoll, Rafael [1 ]
Halter, Gaudenz [2 ]
Pajarola, Renato [2 ]
机构
[1] IE Univ, Madrid, Spain
[2] Univ Zurich, Zurich, Switzerland
来源
VISUAL COMPUTER | 2024年 / 40卷 / 04期
基金
瑞士国家科学基金会;
关键词
Scientific visualization; Sensitivity analysis; Dimensionality reduction; Tensor decompositions; DECOMPOSITIONS; EXPLORATION; ALGORITHMS; MODEL;
D O I
10.1007/s00371-023-02937-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Insightful visualization of multidimensional scalar fields, in particular parameter spaces, is key to many computational science and engineering disciplines. We propose a principal component-based approach to visualize such fields that accurately reflects their sensitivity to their input parameters. The method performs dimensionality reduction on the space formed by all possible partial functions (i.e., those defined by fixing one or more input parameters to specific values), which are projected to low-dimensional parameterized manifolds such as 3D curves, surfaces, and ensembles thereof. Our mapping provides a direct geometrical and visual interpretation in terms of Sobol's celebrated method for variance-based sensitivity analysis. We furthermore contribute a practical realization of the proposed method by means of tensor decomposition, which enables accurate yet interactive integration and multilinear principal component analysis of high-dimensional models.
引用
收藏
页码:2571 / 2588
页数:18
相关论文
共 50 条
  • [31] Visualization of High-Dimensional Combinatorial Catalysis Data
    Suh, Changwon
    Sieg, Simone C.
    Heying, Matthew J.
    Oliver, James H.
    Maier, Wilhelm F.
    Rajan, Krishna
    JOURNAL OF COMBINATORIAL CHEMISTRY, 2009, 11 (03): : 385 - 392
  • [32] ShapeVis: High-dimensional Data Visualization at Scale
    Kumari, Nupur
    Siddarth, R.
    Rupela, Akash
    Gupta, Piyush
    Krishnamurthy, Balaji
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 2920 - 2926
  • [33] Interactive High-Dimensional Visualization of Social Graphs
    Wakita, Ken
    Takami, Masanori
    Hosobe, Hiroshi
    2015 IEEE PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS), 2015, : 303 - 310
  • [34] Orca: A visualization toolkit for high-dimensional data
    Sutherland, P
    Rossini, A
    Lumley, T
    Lewin-Koh, N
    Dickerson, J
    Cox, Z
    Cook, D
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2000, 9 (03) : 509 - 529
  • [35] Using principal components for estimating logistic regression with high-dimensional multicollinear data
    Aguilera, AM
    Escabias, M
    Valderrama, MJ
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (08) : 1905 - 1924
  • [36] Principal component analysis for sparse high-dimensional data
    Raiko, Tapani
    Ilin, Alexander
    Karhunen, Juha
    NEURAL INFORMATION PROCESSING, PART I, 2008, 4984 : 566 - 575
  • [37] High-dimensional principal component analysis with heterogeneous missingness
    Zhu, Ziwei
    Wang, Tengyao
    Samworth, Richard J.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2022, 84 (05) : 2000 - 2031
  • [38] Principal varying coefficient estimator for high-dimensional models
    Zhao, Weihua
    Zhang, Fode
    Wang, Xuejun
    Li, Rui
    Lian, Heng
    STATISTICS, 2019, 53 (06) : 1234 - 1250
  • [39] PRINCIPAL COMPONENT ANALYSIS IN VERY HIGH-DIMENSIONAL SPACES
    Lee, Young Kyung
    Lee, Eun Ryung
    Park, Byeong U.
    STATISTICA SINICA, 2012, 22 (03) : 933 - 956
  • [40] Test for high-dimensional outliers with principal component analysis
    Nakayama, Yugo
    Yata, Kazuyoshi
    Aoshima, Makoto
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2024, 7 (02) : 739 - 766