High-dimensional scalar function visualization using principal parameterizations

被引:1
|
作者
Ballester-Ripoll, Rafael [1 ]
Halter, Gaudenz [2 ]
Pajarola, Renato [2 ]
机构
[1] IE Univ, Madrid, Spain
[2] Univ Zurich, Zurich, Switzerland
来源
VISUAL COMPUTER | 2024年 / 40卷 / 04期
基金
瑞士国家科学基金会;
关键词
Scientific visualization; Sensitivity analysis; Dimensionality reduction; Tensor decompositions; DECOMPOSITIONS; EXPLORATION; ALGORITHMS; MODEL;
D O I
10.1007/s00371-023-02937-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Insightful visualization of multidimensional scalar fields, in particular parameter spaces, is key to many computational science and engineering disciplines. We propose a principal component-based approach to visualize such fields that accurately reflects their sensitivity to their input parameters. The method performs dimensionality reduction on the space formed by all possible partial functions (i.e., those defined by fixing one or more input parameters to specific values), which are projected to low-dimensional parameterized manifolds such as 3D curves, surfaces, and ensembles thereof. Our mapping provides a direct geometrical and visual interpretation in terms of Sobol's celebrated method for variance-based sensitivity analysis. We furthermore contribute a practical realization of the proposed method by means of tensor decomposition, which enables accurate yet interactive integration and multilinear principal component analysis of high-dimensional models.
引用
收藏
页码:2571 / 2588
页数:18
相关论文
共 50 条
  • [21] Scatterplot layout for high-dimensional data visualization
    Zheng, Yunzhu
    Suematsu, Haruka
    Itoh, Takayuki
    Fujimaki, Ryohei
    Morinaga, Satoshi
    Kawahara, Yoshinobu
    JOURNAL OF VISUALIZATION, 2015, 18 (01) : 111 - 119
  • [22] Visualization of high-dimensional biomedical image data
    Serocka, Peter
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2007, 2007, 4810 : 475 - 482
  • [23] Class visualization of high-dimensional data with applications
    Dhillon, IS
    Modha, DS
    Spangler, WS
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 41 (01) : 59 - 90
  • [24] Shu: visualization of high-dimensional biological pathways
    Muriel, Jorge Carrasco
    Cowie, Nicholas
    Parkins, Shannara Taylor
    Mansouvar, Marjan
    Groves, Teddy
    Nielsen, Lars Keld
    BIOINFORMATICS, 2024, 40 (03)
  • [25] Principles of high-dimensional data visualization in astronomy
    Goodman, A. A.
    ASTRONOMISCHE NACHRICHTEN, 2012, 333 (5-6) : 505 - 514
  • [26] Visualization and data mining of high-dimensional data
    Inselberg, A
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2002, 60 (1-2) : 147 - 159
  • [27] Clustering and visualization of a high-dimensional diabetes dataset
    Lasek, Piotr
    Mei, Zhen
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES 2019), 2019, 159 : 2179 - 2188
  • [28] High-dimensional data acquisition, computing, and visualization
    Chen, JX
    Nakano, A
    COMPUTING IN SCIENCE & ENGINEERING, 2003, 5 (02) : 12 - 13
  • [29] Scatterplot layout for high-dimensional data visualization
    Yunzhu Zheng
    Haruka Suematsu
    Takayuki Itoh
    Ryohei Fujimaki
    Satoshi Morinaga
    Yoshinobu Kawahara
    Journal of Visualization, 2015, 18 : 111 - 119
  • [30] Structure and visualization of high-dimensional conductance spaces
    Taylor, Adam L.
    Hickey, Timothy J.
    Prinz, Astrid A.
    Marder, Eve
    JOURNAL OF NEUROPHYSIOLOGY, 2006, 96 (02) : 891 - 905