When are shrinking gradient Ricci soliton compact

被引:0
|
作者
Qu, Yuanyuan [1 ]
Wu, Guoqiang [1 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Sci, Hangzhou 310018, Peoples R China
关键词
Ricci soliton; Compact; Weighted Laplacian; CLASSIFICATION;
D O I
10.1016/j.difgeo.2023.102102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose (M4, g, f) is a complete shrinking gradient Ricci soliton. We give a sufficient condition for a soliton to be compact, generalizing previous result of Munteanu-Wang [17]. As an application, we give a classification of (M4, g, f) under some natural conditions. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] REDUCTION OF GRADIENT RICCI SOLITON EQUATION
    Leandro, Benedito
    dos Santos, Joao Paulo
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 1003 - 1011
  • [22] Gradient Weyl-Ricci Soliton
    Bejan, Cornelia-Livia
    Meric, Semsi Eken
    Kilic, Erol
    TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (04) : 1137 - 1145
  • [23] On Gradient Shrinking Ricci Solitons with Radial Conditions
    Fei Yang
    Liangdi Zhang
    Haiyan Ma
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 2161 - 2174
  • [24] On Gradient Shrinking Ricci Solitons with Radial Conditions
    Yang, Fei
    Zhang, Liangdi
    Ma, Haiyan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (04) : 2161 - 2174
  • [25] Isometry theorem of gradient Shrinking Ricci solitons
    Shaikh, Absos Ali
    Mondal, Chandan Kumar
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 163
  • [26] RIGIDITY OF GRADIENT SHRINKING AND EXPANDING RICCI SOLITONS
    Yang, Fei
    Zhang, Liangdi
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (03) : 817 - 824
  • [27] Hyperbolic Ricci soliton and gradient hyperbolic Ricci soliton on relativistic prefect fluid spacetime
    Siddiqi, Mohd. Danish
    Mofarreh, Fatemah
    AIMS MATHEMATICS, 2024, 9 (08): : 21628 - 21640
  • [28] Uniqueness of shrinking gradient Kahler-Ricci solitons on non-compact toric manifolds
    Cifarelli, Charles
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (04): : 3746 - 3791
  • [29] RICCI-MEAN CURVATURE FLOWS IN GRADIENT SHRINKING RICCI SOLITONS
    Yamamoto, Hikaru
    ASIAN JOURNAL OF MATHEMATICS, 2020, 24 (01) : 77 - 94
  • [30] *-η-Ricci Soliton and Gradient Almost *-η-Ricci Soliton Within the Framework of Para-Kenmotsu Manifolds
    Dey, Santu
    Turki, Nasser Bin
    FRONTIERS IN PHYSICS, 2022, 10