Adversarial attacks on cooperative multi-agent deep reinforcement learning: a dynamic group-based adversarial example transferability method

被引:2
|
作者
Zan, Lixia [1 ]
Zhu, Xiangbin [1 ]
Hu, Zhao-Long [1 ]
机构
[1] Zhejiang Normal Univ, Coll Math & Comp Sci, Jinhua, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-agent reinforcement learning; Adversarial attack; Dynamic grouping; Transfer attack; Attack efficiency; ROBUSTNESS;
D O I
10.1007/s40747-023-01145-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing research shows that cooperative multi-agent deep reinforcement learning (c-MADRL) is vulnerable to adversarial attacks, and c-MADRL is increasingly being applied to safety-critical domains. However, the robustness of c-MADRL against adversarial attacks has not been fully studied. In the setting of c-MADRL, unlike the single-agent scenario, an adversary can attack multiple agents or all agents at each time step, but the attacker needs more computation to generate adversarial examples and will be more easily detected. Therefore, how the attacker chooses one or several agents instead of all agents to attack is a significant issue in the setting of c-MADRL. Aiming to address this issue, this paper proposes a novel adversarial attack approach, which dynamically groups the agents according to relevant features and selects a group to attack based on the group's contribution to the overall reward, thus effectively reducing the cost and number of attacks, as well as improving attack efficiency and decreasing the chance of attackers being detected. Moreover, we exploit the transferability of adversarial examples to greatly reduce the computational cost of generating adversarial examples. Our method is tested in multi-agent particle environments (MPE) and in StarCraft II. Experimental results demonstrate that our proposed method can effectively degrade the performance of multi-agent deep reinforcement learning algorithms with fewer attacks and lower computational costs.
引用
收藏
页码:7439 / 7450
页数:12
相关论文
共 50 条
  • [41] Transform networks for cooperative multi-agent deep reinforcement learning
    Hongbin Wang
    Xiaodong Xie
    Lianke Zhou
    [J]. Applied Intelligence, 2023, 53 : 9261 - 9269
  • [42] Cooperative Multi-Agent Deep Reinforcement Learning in Soccer Domains
    Ocana, Jim Martin Catacora
    Riccio, Francesco
    Capobianco, Roberto
    Nardi, Daniele
    [J]. AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 1865 - 1867
  • [43] Transform networks for cooperative multi-agent deep reinforcement learning
    Wang, Hongbin
    Xie, Xiaodong
    Zhou, Lianke
    [J]. APPLIED INTELLIGENCE, 2023, 53 (08) : 9261 - 9269
  • [44] Cooperative Multi-Agent Deep Reinforcement Learning with Counterfactual Reward
    Shao, Kun
    Zhu, Yuanheng
    Tang, Zhentao
    Zhao, Dongbin
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [45] Multi-Agent Deep Reinforcement Learning for Cooperative Connected Vehicles
    Kwon, Dohyun
    Kim, Joongheon
    [J]. 2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [46] Multi-agent Cooperative Search based on Reinforcement Learning
    Sun, Yinjiang
    Zhang, Rui
    Liang, Wenbao
    Xu, Cheng
    [J]. PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON UNMANNED SYSTEMS (ICUS), 2020, : 891 - 896
  • [47] Cooperative multi-agent game based on reinforcement learning
    Liu, Hongbo
    [J]. HIGH-CONFIDENCE COMPUTING, 2024, 4 (01):
  • [48] Multi-agent cooperative learning research based on reinforcement learning
    Liu, Fei
    Zeng, Guangzhou
    [J]. 2006 10TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, PROCEEDINGS, VOLS 1 AND 2, 2006, : 1408 - 1413
  • [49] Stealthy and Efficient Adversarial Attacks against Deep Reinforcement Learning
    Sun, Jianwen
    Zhang, Tianwei
    Xie, Xiaofei
    Ma, Lei
    Zheng, Yan
    Chen, Kangjie
    Liu, Yang
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 5883 - 5891
  • [50] Deep Reinforcement Adversarial Learning Against Botnet Evasion Attacks
    Apruzzese, Giovanni
    Andreolini, Mauro
    Marchetti, Mirco
    Venturi, Andrea
    Colajanni, Michele
    [J]. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020, 17 (04): : 1975 - 1987