Fabrication and characterization of heavily doped n-type GaAs for mid-infrared plasmonics

被引:1
|
作者
Duan, Juanmei [1 ,2 ]
Liedke, Maciej O. [3 ]
Dawidowski, Wojciech [4 ]
Li, Rang [1 ]
Butterling, Maik [3 ]
Hirschmann, Eric [3 ]
Wagner, Andreas [3 ]
Wang, Mao [1 ]
Young, Lawrence Boyu [5 ,6 ]
Lin, Yen-Hsun Glen [5 ,6 ]
Hong, Minghwei [5 ,6 ]
Helm, Manfred [1 ]
Zhou, Shengqiang [1 ]
Prucnal, Slawomir [1 ]
机构
[1] Helmholtz Zentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, Bautzner Landstr 400, D-01328 Dresden, Germany
[2] Tech Univ Dresden, D-01062 Dresden, Germany
[3] Helmholtz Zentrum Dresden Rossendorf, Inst Radiat Phys, Bautzner Landstr 400, D-01328 Dresden, Germany
[4] Wroclaw Univ Sci & Technol, Fac Elect Photon & Microsyst, Janiszewskiego 11-17, PL-50372 Wroclaw, Poland
[5] Natl Taiwan Univ, Grad Inst Appl Phys, Taipei 10617, Taiwan
[6] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
关键词
POSITRON-ANNIHILATION; SPECTROSCOPY; DEFECTS; COMPENSATION;
D O I
10.1063/5.0151582
中图分类号
O59 [应用物理学];
学科分类号
摘要
N-type doping in GaAs is a self-limited process, rarely exceeding a carrier concentration level of 10(19) cm(-3). Here, we investigated the effect of intense pulsed light melting on defect distribution and activation efficiency in chalcogenide-implanted GaAs by means of positron annihilation spectroscopy and electrochemical capacitance-voltage techniques. In chalcogenide-doped GaAs, donor-vacancy clusters are mainly responsible for donor deactivation. Using positrons as a probe of atomic scale open volumes and DFT calculations, we have shown that after nanosecond pulsed light melting the main defects in heavily doped GaAs are gallium vacancies decorated with chalcogenide atoms substituting As, like V-Ga-Te-n(As) or V-Ga-S-n(As). The distribution of defects and carriers in annealed GaAs follows the depth distribution of implanted elements before annealing and depends on the change in the solidification velocity during recrystallization.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] INFRARED AND ELECTRICAL CHARACTERIZATION OF MULTILAYERED N-TYPE GAAS WAFERS
    HOLM, RT
    CALVIELLO, JA
    [J]. JOURNAL OF APPLIED PHYSICS, 1979, 50 (02) : 1091 - 1096
  • [32] PIEZORESISTANCE IN HEAVILY DOPED N-TYPE GERMANIUM
    POLLAK, M
    [J]. PHYSICAL REVIEW, 1958, 111 (03): : 798 - 802
  • [33] MAGNETORESISTANCE OF HEAVILY DOPED N-TYPE SILICON
    BALKANSK.M
    GEISMAR, A
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1966, S 21 : 554 - &
  • [34] PHOTOLUMINESCENCE OF HEAVILY DOPED N-TYPE CDSE
    LEVY, M
    LEE, WK
    SARACHIK, MP
    GESCHWIND, S
    [J]. PHYSICAL REVIEW B, 1992, 45 (20): : 11685 - 11692
  • [35] PIEZORESISTANCE IN HEAVILY DOPED N-TYPE GERMANIUM
    POLLAK, M
    [J]. PHYSICAL REVIEW LETTERS, 1958, 1 (01) : 44 - 44
  • [36] MAGNETORESISTANCE IN HEAVILY DOPED N-TYPE GERMANIUM
    FURUKAWA, Y
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1962, 17 (04) : 630 - &
  • [37] PROPERTIES OF HEAVILY DOPED N-TYPE GERMANIUM
    SPITZER, WG
    TRUMBORE, FA
    LOGAN, RA
    [J]. JOURNAL OF APPLIED PHYSICS, 1961, 32 (10) : 1822 - &
  • [38] MAGNETORESISTANCE IN HEAVILY DOPED N-TYPE SILICON
    TUFTE, ON
    STELZER, EL
    [J]. PHYSICAL REVIEW, 1965, 139 (1A): : A265 - &
  • [39] FORMATION OF HEAVILY DOPED N-TYPE LAYERS IN GAAS BY MULTIPLE ION-IMPLANTATION
    STONEHAM, EB
    PATTERSON, GA
    GLADSTONE, JM
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 1980, 9 (02) : 371 - 383
  • [40] Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics
    Sachet, Edward
    Shelton, Christopher T.
    Harris, Joshua S.
    Gaddy, Benjamin E.
    Irving, Douglas L.
    Curtarolo, Stefano
    Donovan, Brian F.
    Hopkins, Patrick E.
    Sharma, Peter A.
    Sharma, Ana Lima
    Ihlefeld, Jon
    Franzen, Stefan
    Maria, Jon-Paul
    [J]. NATURE MATERIALS, 2015, 14 (04) : 414 - 420