Identifying optimal architectures of physics-informed neural networks by evolutionary strategy

被引:7
|
作者
Kaplarevic-Malisic, Ana [1 ]
Andrijevic, Branka [1 ]
Bojovic, Filip [1 ]
Nikolic, Srdan [1 ]
Krstic, Lazar [1 ]
Stojanovic, Boban [1 ]
Ivanovic, Milos [1 ]
机构
[1] Univ Kragujevac, Fac Sci, Radoja Domanovica 12, Kragujevac 34000, Serbia
关键词
PINNs; Automatic design; Evolutionary strategy; GA; FRAMEWORK; SYSTEM;
D O I
10.1016/j.asoc.2023.110646
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Physics-Informed Neural Networks (PINNs) are artificial neural networks that encode Partial Differential Equations (PDEs) as an integral component of the ML model. PINNs are successfully used nowadays to solve PDEs, fractional equations, and integral-differential equations, including direct and inverse problems. Just as in the case of other kinds of artificial neural networks, the architecture, including the number and sizes of layers, activation functions, and other hyperparameters can significantly influence the network performance. Despite the serious work in this field, there are still no clear directions on how to choose an optimal network architecture in a consistent manner. In practice, expertise is required, with a significant number of manual trial and error cycles. In this paper, we propose PINN/GA (PINN/Genetic Algorithm), a fully automatic design of a PINN by an evolutionary strategy with specially tailored operators of selection, crossover, and mutation, adapted for deep neural network architecture and hyperparameter search. The PINN/GA strategy starts from the population of simple PINNs, adding new layers only if it brings clear accuracy benefits, keeping PINNs in the population as simple as possible. Since the examination of dozens of neural networks through the evolutionary process implies enormous computational costs, it employs a scalable computational design based on containers and Kubernetes batching orchestration. To demonstrate the potential of the proposed approach, we chose two non-trivial direct problems. The first is 1D Stefan transient model with time-dependent Dirichlet boundary conditions, describing the melting process, and the second is the Helmholtz wave equation over a 2D square domain. The authors found that PINNs accuracy gradually improves throughout the evolutionary process, exhibiting better performance and stability than parallel random search and Hyperopt Tree of Parzen Estimators, while keeping the network design reasonably simple. & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Robust Variational Physics-Informed Neural Networks
    Rojas, Sergio
    Maczuga, Pawel
    Muñoz-Matute, Judit
    Pardo, David
    Paszyński, Maciej
    Computer Methods in Applied Mechanics and Engineering, 2024, 425
  • [22] Physics-informed neural networks for periodic flows
    Shah, Smruti
    Anand, N. K.
    PHYSICS OF FLUIDS, 2024, 36 (07)
  • [23] On physics-informed neural networks for quantum computers
    Markidis, Stefano
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 8
  • [24] Physics-Informed Neural Networks for shell structures
    Bastek, Jan-Hendrik
    Kochmann, Dennis M.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2023, 97
  • [25] fPINNs: FRACTIONAL PHYSICS-INFORMED NEURAL NETWORKS
    Pang, Guofei
    Lu, Lu
    Karniadakis, George E. M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04): : A2603 - A2626
  • [26] Physics-informed neural networks for diffraction tomography
    Amirhossein Saba
    Carlo Gigli
    Ahmed B.Ayoub
    Demetri Psaltis
    Advanced Photonics, 2022, 4 (06) : 48 - 59
  • [27] PINNProv: Provenance for Physics-Informed Neural Networks
    de Oliveira, Lyncoln S.
    Kunstmann, Liliane
    Pina, Debora
    de Oliveira, Daniel
    Mattoso, Marta
    2023 INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING WORKSHOPS, SBAC-PADW, 2023, : 16 - 23
  • [28] Physics-Informed Neural Networks for Power Systems
    Misyris, George S.
    Venzke, Andreas
    Chatzivasileiadis, Spyros
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [29] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    ACTA NUMERICA, 2024, 33 : 633 - 713
  • [30] Identifying Heterogeneous Micromechanical Properties of Biological Tissues via Physics-Informed Neural Networks
    Wu, Wensi
    Daneker, Mitchell
    Turner, Kevin T.
    Jolley, Matthew A.
    Lu, Lu
    SMALL METHODS, 2025, 9 (01):