High-resolution entry and exit surface dosimetry in a 1.5 T MR-linac

被引:5
|
作者
Patterson, E. [1 ]
Stokes, P. [4 ]
Cutajar, D. [1 ]
Rosenfeld, A. [1 ,2 ]
Baines, J. [4 ,5 ]
Metcalfe, P. [1 ,2 ,3 ]
Powers, M. [4 ,5 ]
机构
[1] Univ Wollongong, Ctr Med & Radiat Phys, Wollongong, NSW, Australia
[2] Univ Wollongong, Illawarra Hlth Med Res Inst, Wollongong, NSW, Australia
[3] Ingham Inst Appl Med Res, Liverpool, NSW, Australia
[4] Townsville Hosp, Townsville Canc Ctr, Hlth Serv, Townsville, Qld, Australia
[5] James Cook Univ, Coll Sci & Engn, Townsville, Qld, Australia
关键词
MR-linac; Elekta Unity; MOSFET; Skin dose; Surface dosimetry; Monte Carlo; MV RADIOTHERAPY ACCELERATOR; SKIN DOSE MEASUREMENT; IN-VIVO DOSIMETRY; MAGNETIC-FIELD; MOSKIN DETECTOR; TLD EXTRAPOLATION; SCANNER; BEAM; ORIENTATION; ENTRANCE;
D O I
10.1007/s13246-023-01251-6
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The magnetic field of a transverse MR-linac alters electron trajectories as the photon beam transits through materials, causing lower doses at flat entry surfaces and increased doses at flat beam-exiting surfaces. This study investigated the response of a MOSFET detector, known as the MOSkin (TM), for high-resolution surface and near-surface percentage depth dose measurements on an Elekta Unity. Simulations with Geant4 and the Monaco treatment planning system (TPS), and EBT-3 film measurements, were also performed for comparison. Measured MOSkin (TM) entry surface doses, relative to D-max, were (9.9 +/- 0.2)%, (10.1 +/- 0.3)%, (11.3 +/- 0.6)%, (12.9 +/- 1.0)%, and (13.4 +/- 1.0)% for 1 x 1 cm(2), 3 x 3 cm(2), 5 x 5 cm(2), 10 x 10 cm(2), and 22 x 22 cm(2) fields, respectively. For the investigated fields, the maximum percent differences of Geant4, TPS, and film doses extrapolated and interpolated to a depth suitable for skin dose assessment at the beam entry, relative to MOSkin (TM) measurements at an equivalent depth were 1.0%, 2.8%, and 14.3%, respectively, and at a WED of 199.67 mm at the beam exit, 3.2%, 3.7% and 5.7%, respectively. The largest measured increase in exit dose, due to the electron return effect, was 15.4% for the 10 x 10 cm(2) field size using the MOSkin (TM) and 17.9% for the 22 x 22 cm(2) field size, using Geant4 calculations. The results presented in the study validate the suitability of the MOSkin (TM) detector for transverse MR-linac surface dosimetry.
引用
收藏
页码:787 / 800
页数:14
相关论文
共 50 条
  • [11] Impact of Air Cavity on Planning Dosimetry for Rectum Patients Treated on a 1.5T MR-Linac
    Scripes, P. G.
    Subashi, E.
    Burleson, S.
    Liang, J.
    Romesser, P. B.
    Crane, C. H.
    Mechalakos, J. G.
    Tyagi, N.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : E304 - E304
  • [12] Evaluation of Detectors for Relative Dosimetry Measurements in the Presence of a 1.5 T Magnetic Field From An MR-Linac
    O'Brien, D. J.
    Dolan, J.
    Pencea, S.
    Schupp, N.
    Sawakuchi, G. O.
    MEDICAL PHYSICS, 2017, 44 (06) : 3152 - 3153
  • [13] Relative dosimetry in a 1.5 T magnetic field: an MR-linac compatible prototype scanning water phantom
    Smit, K.
    Sjoholm, J.
    Kok, J. G. M.
    Lagendijk, J. J. W.
    Raaymakers, B. W.
    PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (15): : 4099 - 4109
  • [14] Compact bunker shielding assessment for 1.5 T MR-Linac
    Jiwon Sung
    Yeonho Choi
    Jun Won Kim
    Ik Jae Lee
    Ho Lee
    Scientific Reports, 12
  • [15] Dosimetry with the TruView gel on a 0.35 T MR-Linac: A feasibility study
    Ermeneux, L.
    Petitfils, A.
    Marage, L.
    Gschwind, R.
    Huet, C.
    RADIATION MEASUREMENTS, 2024, 175
  • [16] Marker-Free SBRT of the Liver on the 1.5 T MR-Linac
    Gani, C.
    Boeke, S.
    Nachbar, M.
    Winter, J.
    Moennich, D.
    Stolte, A.
    Boldt, J.
    Marks, C.
    Thorwarth, D.
    Zips, D.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2020, 196 (SUPPL 1) : S42 - S42
  • [17] Electron streaming dose measurements and calculations on a 1.5 T MR-Linac
    Patterson, Elizabeth
    Powers, Marcus
    Metcalfe, Peter E.
    Cutajar, Dean
    Oborn, Bradley M.
    Baines, John A.
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2024, 25 (07):
  • [18] Online Adaptive Planning Strategy for 1.5T MR-Linac
    Yang, J.
    Sobremonte, A.
    Vedam, S.
    Brock, K.
    Ohrt, A.
    Fuller, C.
    Choi, S.
    Jhingran, A.
    Castillo, P.
    Lee, B.
    Wang, J.
    Hughes, N.
    Mohammadsaid, M.
    Balter, P.
    MEDICAL PHYSICS, 2020, 47 (06) : E643 - E643
  • [19] Performance of a cylindrical diode array for use in a 1.5 T MR-linac
    Houweling, A. C.
    de Vries, J. H. W.
    Wolthaus, J.
    Woodings, S.
    Kok, J. G. M.
    van Asselen, B.
    Smit, K.
    Bel, A.
    Lagendijk, J. J. W.
    Raaymakers, B. W.
    PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (03): : N80 - N89
  • [20] Performance of a multileaf collimator system for a 1.5T MR-linac
    Zhang, Ke
    Tian, Yuan
    Li, Minghui
    Men, Kuo
    Dai, Jianrong
    MEDICAL PHYSICS, 2021, 48 (02) : 546 - 555