Are current long-term video understanding datasets long-term?

被引:0
|
作者
Strafforello, Ombretta [1 ]
Schutte, Klamer [2 ]
van Gemert, Jan [3 ]
机构
[1] Delft Univ Technol, TNO, Delft, Netherlands
[2] TNO, Delft, Netherlands
[3] Delft Univ Technol, Delft, Netherlands
基金
荷兰研究理事会;
关键词
D O I
10.1109/ICCVW60793.2023.00319
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many real-world applications, from sport analysis to surveillance, benefit from automatic long-term action recognition. In the current deep learning paradigm for automatic action recognition, it is imperative that models are trained and tested on datasets and tasks that evaluate if such models actually learn and reason over long-term information. In this work, we propose a method to evaluate how suitable a video dataset is to evaluate models for long-term action recognition. To this end, we define a long-term action as excluding all the videos that can be correctly recognized using solely short-term information. We test this definition on existing long-term classification tasks on three popular real-world datasets, namely Breakfast, CrossTask and LVU, to determine if these datasets are truly evaluating long-term recognition. Our study reveals that these datasets can be effectively solved using shortcuts based on short-term information. Following this finding, we encourage long-term action recognition researchers to make use of datasets that need long-term information to be solved.
引用
收藏
页码:2959 / 2968
页数:10
相关论文
共 50 条
  • [41] Understanding the Context for Long-Term Care Planning
    Broyles, Ila H.
    Sperber, Nina R.
    Voils, Corrine I.
    Konetzka, R. Tamara
    Coe, Norma B.
    Van Houtven, Courtney Harold
    [J]. MEDICAL CARE RESEARCH AND REVIEW, 2016, 73 (03) : 349 - 368
  • [42] UNDERSTANDING WHO DECIDES ON LONG-TERM CARE
    SEVERANCE, JS
    [J]. GERONTOLOGIST, 1986, 26 : A49 - A49
  • [43] Understanding the long-term sequelae of ECMO survivors
    Burns, Stacey
    Constantin, Natalie
    Robles, Priscila
    [J]. INTENSIVE CARE MEDICINE, 2018, 44 (07) : 1144 - 1147
  • [44] Understanding long-term unemployment in the Czech Republic
    Jurajda, S
    Münich, D
    [J]. FINANCE A UVER-CZECH JOURNAL OF ECONOMICS AND FINANCE, 2003, 53 (1-2): : 11 - 30
  • [45] Understanding the long-term risks of neutering dogs
    Kutzler, Michelle
    Adams, Vicki J.
    Fogle, Bruce
    Aukland, Chris
    Slater, Alan
    Hodson, Laura Diana
    Anderson, Ingrid
    Elliott, Mark
    Becker, Karen
    Simon, Vicky
    Boland, Paul
    Gilbert, Kristina
    Morris, A. D.
    Pedler, Ilse
    Stein, Robert M.
    McAteer, Emily
    Allport, Richard
    Coleshaw, Pete
    McCarthy, Robert J.
    Lester, Liesbeth
    Jorgensen, Malene
    Couzens, Tim
    Neher, Talitha
    Chapman, Sara Fox
    Johnson, Geoff
    Royal, Barbara
    Clarke, Brendan
    Webster, Judith
    Thompson, Nick
    Prentis, Andrew
    Hansen, Lise
    [J]. VETERINARY RECORD, 2023, 192 (12) : 486 - 487
  • [46] Transients: the key to long-term ecological understanding?
    Hastings, A
    [J]. TRENDS IN ECOLOGY & EVOLUTION, 2004, 19 (01) : 39 - 45
  • [47] Understanding Long-term Effects of Weight Loss
    Adams, Kenneth F.
    [J]. EPIDEMIOLOGY, 2009, 20 (06) : 849 - 850
  • [48] Understanding Long-Term Trends of DHT Networks
    Yu, Jie
    Li, Shasha
    Gan, Shaoduo
    Zhang, Qi
    Wu, Qingbo
    Liu, Zhengji
    Qin, Ying
    Ma, Yongqi
    [J]. PROCEEDINGS OF 2016 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), 2016, : 646 - 650
  • [49] Long, long-term storage
    Lamartine, B.C.
    Stutz, R.A.
    Alexander, J.B.
    [J]. IEEE Potentials, 1997, 16 (05): : 17 - 19
  • [50] LONG-TERM VIDEO GENERATION WITH EVOLVING RESIDUAL VIDEO FRAMES
    Kim, Nayoung
    Kang, Je-Won
    [J]. 2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 3578 - 3582