Are current long-term video understanding datasets long-term?

被引:0
|
作者
Strafforello, Ombretta [1 ]
Schutte, Klamer [2 ]
van Gemert, Jan [3 ]
机构
[1] Delft Univ Technol, TNO, Delft, Netherlands
[2] TNO, Delft, Netherlands
[3] Delft Univ Technol, Delft, Netherlands
基金
荷兰研究理事会;
关键词
D O I
10.1109/ICCVW60793.2023.00319
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many real-world applications, from sport analysis to surveillance, benefit from automatic long-term action recognition. In the current deep learning paradigm for automatic action recognition, it is imperative that models are trained and tested on datasets and tasks that evaluate if such models actually learn and reason over long-term information. In this work, we propose a method to evaluate how suitable a video dataset is to evaluate models for long-term action recognition. To this end, we define a long-term action as excluding all the videos that can be correctly recognized using solely short-term information. We test this definition on existing long-term classification tasks on three popular real-world datasets, namely Breakfast, CrossTask and LVU, to determine if these datasets are truly evaluating long-term recognition. Our study reveals that these datasets can be effectively solved using shortcuts based on short-term information. Following this finding, we encourage long-term action recognition researchers to make use of datasets that need long-term information to be solved.
引用
收藏
页码:2959 / 2968
页数:10
相关论文
共 50 条
  • [31] Long-term outcome of 'long-term liver transplant survivors'
    Rubin, Angel
    Sanchez-Montes, Cristina
    Aguilera, Victoria
    San Juan, Fernando
    Ferrer, Isabel
    Moya, Angel
    Montalva, Eva
    Pareja, Eugenia
    Lopez-Andujar, Rafael
    Prieto, Martin
    Berenguer, Marina
    [J]. TRANSPLANT INTERNATIONAL, 2013, 26 (07) : 740 - 750
  • [32] Stochastic Induction of Long-Term Potentiation and Long-Term Depression
    Antunes, G.
    Roque, A. C.
    Simoes-de-Souza, F. M.
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [33] THE AUTONOMY OF LONG-TERM THERAPY - THE TIGHTROPE OF LONG-TERM MEDICATION
    GUGLER, R
    SCHMIDT, L
    DOLLE, W
    FRIEBEL, H
    [J]. MUNCHENER MEDIZINISCHE WOCHENSCHRIFT, 1982, 124 (06): : 30 - &
  • [34] Stochastic Induction of Long-Term Potentiation and Long-Term Depression
    G. Antunes
    A. C. Roque
    F. M. Simoes-de-Souza
    [J]. Scientific Reports, 6
  • [35] Long-term outcome of "long-term liver transplant survivors"
    Berenguer, Marina
    Rubin, Angel
    Vinaixa, Carmen
    Alonso, Noelia
    Sanchez-Montes, Cristina
    Aguilera, Victoria
    Garcia Eliz, Maria
    San Juan, Fernando
    Lopez-Andujar, Rafae
    Prieto, Martin
    [J]. HEPATOLOGY, 2012, 56 : 502A - 502A
  • [36] LTN: Long-Term Network for Long-Term Motion Prediction
    Wang, YingQiao
    [J]. 2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 1845 - 1852
  • [37] Long-term potentiation and long-term depression: a clinical perspective
    Bliss, Timothy V. P.
    Cooke, Sam F.
    [J]. CLINICS, 2011, 66 : 3 - 17
  • [38] Understanding the long-term effects of species invasions
    Strayer, David L.
    Eviner, Valerie T.
    Jeschke, Jonathan M.
    Pace, Michael L.
    [J]. TRENDS IN ECOLOGY & EVOLUTION, 2006, 21 (11) : 645 - 651
  • [39] Understanding the long-term sequelae of ECMO survivors
    Stacey Burns
    Natalie Constantin
    Priscila Robles
    [J]. Intensive Care Medicine, 2018, 44 : 1144 - 1147
  • [40] Understanding the long-term course of HIV epidemics
    Des Jarlais, DC
    [J]. AIDS, 1998, 12 (06) : 669 - 670