Tunable Broadband Terahertz Metamaterial Absorber Based on Vanadium Dioxide and Graphene

被引:5
|
作者
Zheng, Laifang [1 ,2 ]
Feng, Rui [2 ]
Shi, Huanting [2 ]
Li, Xuanjing [2 ]
机构
[1] Taiyuan Inst Technol, Dept Elect Engn, Taiyuan 030008, Peoples R China
[2] North Univ China, China Key Lab Micro Nano Devices & Syst, Minist Educ, Taiyuan 030051, Peoples R China
关键词
graphene; metamaterial absorber; terahertz; tunable; vanadium dioxide; ABSORPTION;
D O I
10.3390/mi14091715
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We propose a dynamically tunable ultra-broadband terahertz metamaterial absorber, which was based on graphene and vanadium oxide (VO2) and numerically demonstrated. The excellent absorption bandwidth almost entirely greater than 90% was as wide as 6.35 THz from 2.30 to 8.65 THz under normal incidence. By changing the conductivity of VO2 from 20 S/m to 3 x 10(5) S/m, the absorption intensity could be dynamically tuned from 6% to 99%. The physical mechanism of the ultra-wideband absorption is discussed based on the interference cancelation, impedance matching theory, and field distributions, and the influences of the structural parameters on absorption are also discussed. According to the symmetric configuration, the absorption spectra of the considered polarizations were very close to each other, resulting in a polarization-insensitive structure. Such a tunable ultra-broadband absorber may have promising potential in the applications of modulating, cloaking, switching, and imaging technology.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [1] Terahertz Broadband Tunable Metamaterial Absorber Based on Graphene and Vanadium Dioxide
    Liu Su-ya-la-tu
    Wang Zong-li
    Pang Hui-zhong
    Tian Hu-qiang
    Wang Xin
    Wang Jun-lin
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42 (04) : 1257 - 1263
  • [2] A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide
    Dao, Ri-na
    Kong, Xin-ru
    Zhang, Hai-feng
    Su, Xin-ran
    OPTIK, 2019, 180 : 619 - 625
  • [3] Tunable broadband terahertz metamaterial absorber based on vanadium dioxide
    Yang, Guishuang
    Yan, Fengping
    Du, Xuemei
    Li, Ting
    Wang, Wei
    Lv, Yuling
    Zhou, Hong
    Hou, Yafei
    AIP ADVANCES, 2022, 12 (04)
  • [4] Tunable Dual Broadband Terahertz Metamaterial Absorber Based on Vanadium Dioxide
    Jiao, Xiao-Fei
    Zhang, Zi-Heng
    Li, Tong
    Xu, Yun
    Song, Guo-Feng
    APPLIED SCIENCES-BASEL, 2020, 10 (20): : 1 - 9
  • [5] Broadband terahertz metamaterial absorber with a tunable performance based on vanadium dioxide
    Hongyan Lin
    Yuke Zou
    Yangkuan Wu
    Xingzhu Wang
    Huaxin Zhu
    Xiangyang Zhang
    Han Xiong
    Ben-Xin Wang
    Applied Physics A, 2023, 129
  • [6] Broadband terahertz metamaterial absorber with a tunable performance based on vanadium dioxide
    Lin, Hongyan
    Zou, Yuke
    Wu, Yangkuan
    Wang, Xingzhu
    Zhu, Huaxin
    Zhang, Xiangyang
    Xiong, Han
    Wang, Ben-Xin
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2023, 129 (08):
  • [7] Dynamically Tunable Broadband Terahertz Metamaterial Absorber Based on Vanadium Dioxide
    Jiang, Gong
    Rong, Zong
    Hui, Li
    Tao, Duan
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (03)
  • [8] Switchable and tunable terahertz metamaterial absorber based on graphene and vanadium dioxide
    Li, Dezhi
    He, Shen
    Su, Li
    Du, Haitao
    Tian, Ye
    Gao, Ziqi
    Xie, Bowen
    Huang, Guoqi
    OPTICAL MATERIALS, 2024, 147
  • [9] Vanadium dioxide-assisted broadband tunable terahertz metamaterial absorber
    Huan Liu
    Zhi-Hang Wang
    Lin Li
    Ya-Xian Fan
    Zhi-Yong Tao
    Scientific Reports, 9
  • [10] Tunable Broadband-Narrowband and Dual-Broadband Terahertz Absorber Based on a Hybrid Metamaterial Vanadium Dioxide and Graphene
    Li, Jing
    Liu, Yanfei
    Chen, Yu
    Chen, Wenqing
    Guo, Honglei
    Wu, Qiannan
    Li, Mengwei
    MICROMACHINES, 2023, 14 (01)