Tunable Broadband Terahertz Metamaterial Absorber Based on Vanadium Dioxide and Graphene

被引:5
|
作者
Zheng, Laifang [1 ,2 ]
Feng, Rui [2 ]
Shi, Huanting [2 ]
Li, Xuanjing [2 ]
机构
[1] Taiyuan Inst Technol, Dept Elect Engn, Taiyuan 030008, Peoples R China
[2] North Univ China, China Key Lab Micro Nano Devices & Syst, Minist Educ, Taiyuan 030051, Peoples R China
关键词
graphene; metamaterial absorber; terahertz; tunable; vanadium dioxide; ABSORPTION;
D O I
10.3390/mi14091715
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We propose a dynamically tunable ultra-broadband terahertz metamaterial absorber, which was based on graphene and vanadium oxide (VO2) and numerically demonstrated. The excellent absorption bandwidth almost entirely greater than 90% was as wide as 6.35 THz from 2.30 to 8.65 THz under normal incidence. By changing the conductivity of VO2 from 20 S/m to 3 x 10(5) S/m, the absorption intensity could be dynamically tuned from 6% to 99%. The physical mechanism of the ultra-wideband absorption is discussed based on the interference cancelation, impedance matching theory, and field distributions, and the influences of the structural parameters on absorption are also discussed. According to the symmetric configuration, the absorption spectra of the considered polarizations were very close to each other, resulting in a polarization-insensitive structure. Such a tunable ultra-broadband absorber may have promising potential in the applications of modulating, cloaking, switching, and imaging technology.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Dual-band/ultra-broadband switchable terahertz metamaterial absorber based on vanadium dioxide and graphene
    Song, Chengwei
    Wang, Jiayun
    Zhang, Binzhen
    Qu, Zeng
    Jing, Huihui
    Kang, Jingfeng
    Hao, Jingxian
    Duan, Junping
    OPTICS COMMUNICATIONS, 2023, 530
  • [42] Tunable broadband terahertz absorber based on a simple design of a vanadium dioxide resonator
    Wang, Yunji
    Gu, Yao
    Liu, Fei
    Chen, Lin
    Wang, Xingchao
    Ji, Ke
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2025, 42 (03): : 309 - 314
  • [43] Tunable ultra-broadband terahertz perfect absorber based on vanadium oxide metamaterial
    Li, Yulian
    Gao, Wei
    Guo, Li
    Chen, Zihao
    Li, Changjian
    Zhang, Haiming
    Jiao, Jiajia
    An, Bowen
    OPTICS EXPRESS, 2021, 29 (25): : 41222 - 41233
  • [44] Tunable terahertz wave broadband absorber based on metamaterial
    Chen Jun
    Yang Mao-Sheng
    Li Ya-Di
    Cheng Deng-Ke
    Guo Geng-Liang
    Jiang Lin
    Zhang Hai-Ting
    Song Xiao-Xian
    Ye Yun-Xia
    Ren Yun-Peng
    Ren Xu-Dong
    Zhang Ya-Ting
    Yao Jian-Quan
    ACTA PHYSICA SINICA, 2019, 68 (24)
  • [45] Multi-functional and actively tunable terahertz metamaterial absorber based on a graphene and vanadium dioxide composite structure
    Hossain, A. B. M. Arafat
    Khaleque, Abdul
    OPTICS CONTINUUM, 2024, 3 (06): : 921 - 934
  • [46] Vanadium dioxide-based ultra-broadband metamaterial absorber for terahertz waves
    Wu, Guozheng
    Li, Chao
    Wang, Dong
    Gao, Song
    Chen, Wenya
    Guo, Shijing
    Xiong, Jiaran
    OPTICAL MATERIALS, 2024, 147
  • [47] Tunable multiband metamaterial coherent perfect absorber based on graphene and vanadium dioxide
    Xiong, Ting-Hui
    Zhao, Kai
    Li, Wei
    Peng, Yu-Xiang
    He, Meng-Dong
    Wang, Kai-Jun
    Zhang, Xin-Min
    Li, Jian-Bo
    Liu, Jian-Qiang
    OPTICS COMMUNICATIONS, 2022, 523
  • [48] Tunable broadband terahertz metamaterial absorber using multi-layer black phosphorus and vanadium dioxide
    Wang, Tongling
    Qu, Lizhi
    Qu, Lingfei
    Zhang, Yuping
    Zhang, Huiyun
    Cao, Maoyong
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (14)
  • [49] Dual-regulated broadband terahertz absorber based on vanadium dioxide and graphene
    Zhang, Chunyu
    Zhang, Heng
    Ling, Fang
    Zhang, Bin
    APPLIED OPTICS, 2021, 60 (16) : 4835 - 4840
  • [50] Broadband Terahertz Metamaterial Absorber Based on Patterned Graphene
    Feng Yue
    Liu Hai
    Chen Cong
    Gao Peng
    Luo Hao
    Ren Ziyan
    Qiao Yujia
    ACTA PHOTONICA SINICA, 2022, 51 (09)