Subgroup Analysis for Longitudinal Data via Semiparametric Additive Mixed Effects Model

被引:2
|
作者
Bo, Xiaolin [1 ]
Zhang, Weiping [1 ]
机构
[1] Univ Sci & Technol China, Dept Stat & Finance, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Additive model; backfitting; mixed effects; subgroup identification; REGRESSION SPLINES; IDENTIFICATION; ASYMPTOTICS; PROFILES; TREES;
D O I
10.1007/s11424-023-2011-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proposed a general framework based on semiparametric additive mixed effects model to identify subgroups on each covariate and estimate the corresponding regression functions simultaneously for longitudinal data, thus it could reveal which covariate contributes to the existence of subgroups among population. A backfitting combined with k-means algorithm was developed to detect subgroup structure on each covariate and estimate each semiparametric additive component across subgroups. A Bayesian information criterion is employed to estimate the actual number of groups. The efficacy and accuracy of the proposed procedure in identifying the subgroups and estimating the regression functions are illustrated through numerical studies. In addition, the authors demonstrate the usefulness of the proposed method with applications to PBC data and Industrial Portfolio's Return data and provide meaningful partitions of the populations.
引用
收藏
页码:2155 / 2185
页数:31
相关论文
共 50 条
  • [41] Semiparametric Regression Analysis of Longitudinal Skewed Data
    Lin, Huazhen
    Zhou, Ling
    Zhou, Xiaohua
    SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (04) : 1031 - 1050
  • [42] Statistical analysis of somatic cell scores via mixed model methodology for longitudinal data
    Robert-Granié, C
    Foulley, JL
    Maza, E
    Rupp, R
    ANIMAL RESEARCH, 2004, 53 (04): : 259 - 273
  • [43] Model specification test in a semiparametric regression model for longitudinal data
    Cho, Hyunkeun
    Kim, Seonjin
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 160 : 105 - 116
  • [44] A semiparametric Bayesian approach to binomial distribution logistic mixed-effects models for longitudinal data
    Zhao, Yuanying
    Xu, Dengke
    Duan, Xingde
    Du, Jiang
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (07) : 1438 - 1456
  • [45] New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis
    Fan, JQ
    Li, R
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (467) : 710 - 723
  • [46] An estimation method for the semiparametric mixed effects model
    Tao, NG
    Palta, M
    Yandell, BS
    Newton, MA
    BIOMETRICS, 1999, 55 (01) : 102 - 110
  • [47] Estimation Method in a Semiparametric Regression Model for Longitudinal Data
    Tian Ping
    RECENT ADVANCE IN STATISTICS APPLICATION AND RELATED AREAS, VOLS I AND II, 2009, : 769 - 774
  • [48] Asymptotics on semiparametric analysis of multivariate failure time data under the additive hazards model
    Liu H.-B.
    Sun L.-Q.
    Zhu L.-X.
    Acta Mathematicae Applicatae Sinica, 2005, 21 (2) : 237 - 246
  • [49] A Semiparametric Marginalized Model for Longitudinal Data with Informative Dropout
    Liu, Mengling
    Lu, Wenbin
    JOURNAL OF PROBABILITY AND STATISTICS, 2012, 2012
  • [50] A Bayesian semiparametric model for bivariate sparse longitudinal data
    Das, Kiranmoy
    Li, Runze
    Sengupta, Subhajit
    Wu, Rongling
    STATISTICS IN MEDICINE, 2013, 32 (22) : 3899 - 3910