Iterative refinement method by higher-order singular value decomposition for solving multi-linear systems

被引:2
|
作者
Cui, Lu-Bin [1 ]
Hu, Wen-Li [1 ]
Yuan, Jin-Yun [2 ,3 ]
机构
[1] Henan Normal Univ, Sch Math & Informat Sci, Henan Engn Lab Big Data Stat Anal & Optimal Contro, Xinxiang 453007, Peoples R China
[2] Dongguan Univ Technol, Sch Comp Sci & Technol, Dongguan 523808, Peoples R China
[3] Univ Fed Parana, Ctr Politecn, Dept Matemat, BR-81531980 Curitiba, Brazil
关键词
Iterative refinement method; Higher-order singular value; decomposition; Multi-linear systems; LU decomposition;
D O I
10.1016/j.aml.2023.108819
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the higher-order singular value decomposition and the LU decomposition are applied to solve the general multi-linear systems, rather than special structure like M-tensor. Here, we transform the general tensor system into a form with a special structure. In addition, an iterative refinement method is constructed by the information of the coefficient tensor itself, the higher-order singular value, instead of the spectra of iterative tensor. Finally, the numerical experimental results are given to demonstrate the efficiency of the iterative refinement method. & COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A new preconditioner for Gauss–Seidel method for solving multi-linear systems
    Kai Xie
    Shu-Xin Miao
    Japan Journal of Industrial and Applied Mathematics, 2023, 40 : 1159 - 1173
  • [42] PRECONDITIONED AOR ITERATIVE METHODS FOR SOLVING MULTI-LINEAR SYSTEMS WITH M-TENSOR
    Qi, Meng
    Shao, Xinhui
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2021, 39 (3-4): : 587 - 600
  • [43] Preconditioned tensor splitting iterations method for solving multi-linear systems
    Cui, Lu-Bin
    Li, Ming-Hui
    Song, Yisheng
    APPLIED MATHEMATICS LETTERS, 2019, 96 : 89 - 94
  • [44] L1-NORM HIGHER-ORDER SINGULAR-VALUE DECOMPOSITION
    Markopoulos, Panos P.
    Chachlakis, Dimitris G.
    Prater-Bennette, Ashley
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 1353 - 1357
  • [45] A Higher-Order Singular Value Decomposition-Based Target Localization Algorithm for WiFi Array Systems
    Liu, Hongqing
    Zhang, Heng
    Shi, Jinmei
    Lan, Xiang
    Wang, Wenshuai
    Wang, Xianpeng
    REMOTE SENSING, 2023, 15 (20)
  • [46] Positive Solutions for Singular Systems of Higher-Order Multi-Point Boundary Value Problems
    Henderson, Johnny
    Luca, Rodica
    MATHEMATICAL MODELLING AND ANALYSIS, 2013, 18 (03) : 309 - 324
  • [47] Higher-order singular value decomposition and the reduced density matrices of three qubits
    Choong, Pak Shen
    Zainuddin, Hishamuddin
    Chan, Kar Tim
    Husain, Sh. K. Said
    QUANTUM INFORMATION PROCESSING, 2020, 19 (09)
  • [48] Higher-order singular value decomposition and the reduced density matrices of three qubits
    Pak Shen Choong
    Hishamuddin Zainuddin
    Kar Tim Chan
    Sh. K. Said Husain
    Quantum Information Processing, 2020, 19
  • [49] On Robust Computation of Tensor Classifiers Based on the Higher-Order Singular Value Decomposition
    Cyganek, Boguslaw
    Wozniak, Michal
    SOFTWARE ENGINEERING PERSPECTIVES AND APPLICATION IN INTELLIGENT SYSTEMS, VOL 2, 2016, 465 : 193 - 201
  • [50] A HIGHER-ORDER GENERALIZED SINGULAR VALUE DECOMPOSITION FOR RANK-DEFICIENT MATRICES
    Kempf, Idris
    Goulart, Paul J.
    Duncan, Stephen R.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2023, 44 (03) : 1047 - 1072