Jensen-Mercer inequality for uniformly convex functions with some applications

被引:2
|
作者
Sayyari, Yamin [1 ]
Barsam, Hasan [2 ]
机构
[1] Sirjan Univ Technol, Dept Math, Sirjan, Iran
[2] Univ Jiroft, Fac Sci, Dept Math, POB 78671-61167, Jiroft, Iran
关键词
Jensen's inequality; Mercer's inequality; Uniformly convex function;
D O I
10.1007/s13370-023-01084-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, the Jensen-Mercer inequality for a uniformly convex function is established. There are also certain application-related inequalities that are presented.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Refinements of Jensen's inequality by uniformly convex functions
    Abramovich, Shoshana
    [J]. AEQUATIONES MATHEMATICAE, 2023, 97 (01) : 75 - 88
  • [22] Jensen-Mercer Operator Inequalities Involving Superquadratic Functions
    Anjidani, E.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (02)
  • [23] Generalizations of the Jensen-Mercer Inequality via Fink's Identity
    Matkovic, Anita
    [J]. MATHEMATICS, 2021, 9 (19)
  • [24] NOTE ON GENERALIZATION OF THE JENSEN-MERCER INEQUALITY BY TAYLOR'S POLYNOMIAL
    Matkovic, Anita
    Pecaric, Josip
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (04): : 1379 - 1384
  • [25] SOME NOTE ON JENSEN-MERCER'S TYPE INEQUALITIES; EXTENSIONS AND REFINEMENTS WITH APPLICATIONS
    Horvath, Laszlo
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (04): : 1093 - 1094
  • [26] Fractional version of the Jensen-Mercer and Hermite-Jensen-Mercer type inequalities for strongly h-convex function
    Ma, Fangfang
    [J]. AIMS MATHEMATICS, 2022, 7 (01): : 784 - 803
  • [27] Jensen-Mercer Type Inequalities in the Setting of Fractional Calculus with Applications
    Bin-Mohsin, Bandar
    Javed, Muhammad Zakria
    Awan, Muhammad Uzair
    Mihai, Marcela, V
    Budak, Huseyin
    Khan, Awais Gul
    Noor, Muhammad Aslam
    [J]. SYMMETRY-BASEL, 2022, 14 (10):
  • [28] Refinements of Jensen's inequality of Mercer's type for operator convex functions
    Matkovic, A.
    Pecaric, J.
    Peric, I.
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2008, 11 (01): : 113 - 126
  • [29] BOUNDS FOR THE NORMALIZED JENSEN-MERCER FUNCTIONAL
    Baric, J.
    Matkovic, A.
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2009, 3 (04): : 529 - 541
  • [30] Improvement in Some Inequalities via Jensen-Mercer Inequality and Fractional Extended Riemann-Liouville Integrals
    Hyder, Abd-Allah
    Almoneef, Areej A.
    Budak, Huseyin
    [J]. AXIOMS, 2023, 12 (09)