Improvement in Some Inequalities via Jensen-Mercer Inequality and Fractional Extended Riemann-Liouville Integrals

被引:1
|
作者
Hyder, Abd-Allah [1 ,2 ]
Almoneef, Areej A. [3 ]
Budak, Huseyin [4 ]
机构
[1] King Khalid Univ, Coll Sci, Dept Math, POB 9004, Abha 61413, Saudi Arabia
[2] Al Azhar Univ, Fac Engn, Dept Engn Math & Phys, Cairo 71524, Egypt
[3] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
[4] Duzce Univ, Fac Sci & Arts, Dept Math, TR-81620 Duzce, Turkiye
关键词
fractional integrals; fractional inequalities; Jensen-Merce inequality; CONVEX-FUNCTIONS;
D O I
10.3390/axioms12090886
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The primary intent of this study is to establish some important inequalities of the Hermite-Hadamard, trapezoid, and midpoint types under fractional extended Riemann-Liouville integrals (FERLIs). The proofs are constructed using the renowned Jensen-Mercer, power-mean, and Holder inequalities. Various equalities for the FERLIs and convex functions are construed to be the mainstay for finding new results. Some connections between our main findings and previous research on Riemann-Liouville fractional integrals and FERLIs are also discussed. Moreover, a number of examples are featured, with graphical representations to illustrate and validate the accuracy of the new findings.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals
    Butt, Saad Ihsan
    Kashuri, Artion
    Umar, Muhammad
    Aslam, Adnan
    Gao, Wei
    [J]. AIMS MATHEMATICS, 2020, 5 (05): : 5193 - 5220
  • [2] Some inequalities via ψ-Riemann-Liouville fractional integrals
    Mehreen, Naila
    Anwar, Matloob
    [J]. AIMS MATHEMATICS, 2019, 4 (05): : 1403 - 1415
  • [3] Some results on integral inequalities via Riemann-Liouville fractional integrals
    Li, Xiaoling
    Qaisar, Shahid
    Nasir, Jamshed
    Butt, Saad Ihsan
    Ahmad, Farooq
    Bari, Mehwish
    Farooq, Shan E.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [4] New Variant of Hermite-Jensen-Mercer Inequalities via Riemann-Liouville Fractional Integral Operators
    Kang, Qiong
    Butt, Saad Ihsan
    Nazeer, Waqas
    Nadeem, Mehroz
    Nasir, Jamshed
    Yang, Hong
    [J]. JOURNAL OF MATHEMATICS, 2020, 2020
  • [5] The Hermite-Hadamard-Jensen-Mercer Type Inequalities for Riemann-Liouville Fractional Integral
    Wang, Hua
    Khan, Jamroz
    Adil Khan, Muhammad
    Khalid, Sadia
    Khan, Rewayat
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [6] Some new inequalities for convex functions via Riemann-Liouville fractional integrals
    Gurbuz, Mustafa
    Yildiz, Cetin
    [J]. APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2021, 6 (01) : 537 - 544
  • [7] On Some Generalized Integral Inequalities for Riemann-Liouville Fractional Integrals
    Sarikaya, Mehmet Zeki
    Filiz, Hatice
    Kiris, Mehmet Eyup
    [J]. FILOMAT, 2015, 29 (06) : 1307 - 1314
  • [8] On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals
    Abdeljawad, Thabet
    Ali, Muhammad Aamir
    Mohammed, Pshtiwan Othman
    Kashuri, Artion
    [J]. AIMS MATHEMATICS, 2021, 6 (01): : 712 - 725
  • [9] Some New Jensen-Mercer Type Integral Inequalities via Fractional Operators
    Bayraktar, Bahtiyar
    Korus, Peter
    Valdes, Juan Eduardo Napoles
    [J]. AXIOMS, 2023, 12 (06)
  • [10] Some new parameterized inequalities based on Riemann-Liouville fractional integrals
    Kara, Hasan
    Budak, Huseyin
    Akdemir, Ahmet Ocak
    [J]. FILOMAT, 2023, 37 (23) : 7867 - 7880