Historical Text Line Segmentation Using Deep Learning Algorithms: Mask-RCNN against U-Net Networks

被引:2
|
作者
Fizaine, Florian Come [1 ,2 ]
Bard, Patrick [1 ]
Paindavoine, Michel [1 ]
Robin, Cecile [2 ,3 ]
Bouye, Edouard [2 ]
Lefevre, Raphael [4 ]
Vinter, Annie [1 ]
机构
[1] Univ Bourgogne, LEAD CNRS, F-21000 Dijon, France
[2] Arch Dept Cote dOr, F-21000 Dijon, France
[3] Inst Natl Patrimoine, F-75002 Paris, France
[4] Soc Natl Chemins Fer Francais, F-93200 St Denis, France
关键词
deep learning; line segmentation; instance segmentation; Mask-RCNN; U-Net; historical document analysis; DOCUMENTS;
D O I
10.3390/jimaging10030065
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Text line segmentation is a necessary preliminary step before most text transcription algorithms are applied. The leading deep learning networks used in this context (ARU-Net, dhSegment, and Doc-UFCN) are based on the U-Net architecture. They are efficient, but fall under the same concept, requiring a post-processing step to perform instance (e.g., text line) segmentation. In the present work, we test the advantages of Mask-RCNN, which is designed to perform instance segmentation directly. This work is the first to directly compare Mask-RCNN- and U-Net-based networks on text segmentation of historical documents, showing the superiority of the former over the latter. Three studies were conducted, one comparing these networks on different historical databases, another comparing Mask-RCNN with Doc-UFCN on a private historical database, and a third comparing the handwritten text recognition (HTR) performance of the tested networks. The results showed that Mask-RCNN outperformed ARU-Net, dhSegment, and Doc-UFCN using relevant line segmentation metrics, that performance evaluation should not focus on the raw masks generated by the networks, that a light mask processing is an efficient and simple solution to improve evaluation, and that Mask-RCNN leads to better HTR performance.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Automated Pixel-Level Deep Crack Segmentation on Historical Surfaces Using U-Net Models
    Elhariri, Esraa
    El-Bendary, Nashwa
    Taie, Shereen A.
    ALGORITHMS, 2022, 15 (08)
  • [22] RURAL SETTLEMENTS SEGMENTATION BASED ON DEEP LEARNING U-NET USING REMOTE SENSING IMAGES
    Aamir, Zakaria
    Seddouki, Mariem
    Himmy, Oussama
    Maanan, Mehdi
    Tahiri, Mohamed
    Rhinane, Hassan
    GEOINFORMATION WEEK 2022, VOL. 48-4, 2023, : 1 - 5
  • [23] Segmentation of Optic Nerve images for glaucoma detection, using U-Net Deep Learning Model
    Belalcazar, Sandra
    Rodriguez, Francisco
    Rosensthiel, Shirley
    Carvajal, Claudia
    Perdomo, Oscar
    Carpio-Rosso, Vanessa
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (07)
  • [24] Correction to: Automatic liver segmentation using U-Net deep learning architecture for additive manufacturing
    Jayant Giri
    T. Sathish
    Taukeer Sheikh
    Neeraj Sunheriya
    Pallavi Giri
    Rajkumar Chadge
    Chetan Mahatme
    A. Parthiban
    Interactions, 245 (1)
  • [25] Remote Sensing Image Segmentation for Aircraft Recognition Using U-Net as Deep Learning Architecture
    Shaar, Fadi
    Yilmaz, Arif
    Topcu, Ahmet Ercan
    Alzoubi, Yehia Ibrahim
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [26] Segmentation and detection of crop pests using novel U-Net with hybrid deep learning mechanism
    Biradar, Nagaveni
    Hosalli, Girisha
    PEST MANAGEMENT SCIENCE, 2024, 80 (08) : 3795 - 3807
  • [27] Fully-Automated Drusen Segmentation in OCT using Deep Learning with Pyramid U-net
    Grechenig, Christoph
    Asgari, Fatemeh
    Gerendas, Bianca S.
    Waldstein, Sebastian M.
    Schlanitz, Ferdinand Georg
    Baratsits, Magdalena
    Bogunovic, Hrvoje
    Schmidt-Erfurth, Ursula
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [28] Texture Segmentation: An Objective Comparison between Five Traditional Algorithms and a Deep-Learning U-Net Architecture
    Karabag, Cefa
    Verhoeven, Jo
    Miller, Naomi Rachel
    Reyes-Aldasoro, Constantino Carlos
    APPLIED SCIENCES-BASEL, 2019, 9 (18):
  • [29] Breast Segmentation in MRI via U-Net Deep Convolutional Neural Networks
    Piantadosi, Gabriele
    Sansone, Mario
    Sansone, Carlo
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 3917 - 3922
  • [30] Edge U-Net: Brain tumor segmentation using MRI based on deep U-Net model with boundary information
    Allah, Ahmed M. Gab
    Sarhan, Amany M.
    Elshennawy, Nada M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213