On Hopf algebraic structures of quantum toroidal algebras

被引:3
|
作者
Jing, Naihuan [1 ]
Zhang, Honglian [2 ]
机构
[1] North Carolina State Univ, Dept Math, Raleigh, NC USA
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
美国国家科学基金会;
关键词
Drinfeld realization; comultiplication; Drinfeld generator; Hopf algebra; quantum toroidal algebra; DRINFELD REALIZATION; VERTEX OPERATORS; REPRESENTATIONS; COPRODUCT; YANGIANS;
D O I
10.1080/00927872.2022.2127604
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define an algebra u(0) using a simplified set of generators for the quantum toroidal algebra U-q(sl(n+1),tor) and show that there exists an epimorphism from u(0) to U-q(sl(n+1),tor). We derive a closed formula of the comultiplication on the generators of u(0) that extends that of the quantum affine algebra U-q((sl) over cap (n+1)). As a consequence, we show that u(0) is a Hopf algebra for n = 1, 2 and give conjectural formulas in the general case. We further show that u(0) is isomorphic to a double algebra.
引用
收藏
页码:1135 / 1157
页数:23
相关论文
共 50 条